Question	Answer	Marks	Guidance
1 (a)	antiproton; antiparticle; -1 (or -e) neutrino; particle; 0 neutron; particle; 0 positron; antiparticle; +1(or +e)	3	There are six spaces to fill; the answers are shown here in bold type. All 6 correct: 3 marks 4 or 5 correct: 2 marks 2 or 3 correct: 1 mark
1 (b) (i)	they carry opposite charges (+e and -e)	1	The magnetic field therefore forces them in opposite directions.
1 (b) (ii)	they lose kinetic energy gradually as they travel along their paths	1	'The slower it went, the more it would bend' (passage). Slower charged particles are deflected more easily by a magnetic field.
1 (b) (iii)	Relevant points include: • the speed is greater where the track is less curved • the straighter track must therefore be before the particle met the plate • the direction of the curve shows that the charge is positive • the track must therefore be due to a positron	3	' he discovered a beta particle that slowed down but bent in the opposite direction to all the other beta trails' (passage).
2 (a)	90 protons	1	Proton number Z = 90
	139 neutrons and 90 electrons	1	Number of neutrons = 229 – 90 Number of electrons = <i>Z</i>
2 (b)	X = 90	1	This is still thorium, and here X is used to represent the proton number.
	Y = any value between 212 and 252	1	In a different isotope, the nucleon number cannot be 229.
	Z = 90	1	The number of electrons is unchanged.
3 (a)	18 protons	1	Proton number Z = 18
	19 neutrons	1	Number of neutrons = 37 – 18
3 (b)	charge = +2 or +2e	1	2 electrons have been removed, so the ion's charge is positive.
0 (-) ()	$Q = 2 \times 1.6 \times 10^{-19} = 3.2 \times 10^{-19} \text{ C}$	1	
3 (c) (i)	neutron	1	$Q = 0$ for a neutron, so $\frac{Q}{m}$ is also zero
3 (c) (ii)	electron	1	The electro-'s small mass gives it the largest $\frac{Q}{m}$.
3 (d)	$(\%) = \frac{16 \times 9.11 \times 10^{-31}}{37 \times 1.67 \times 10^{-27}} \times 100$	2	Marks are for correct nuclear mass, and for correct substitution of values in rest of the equation.
	$= 2.4 \times 10^{-2} \%$	1	Remember to multiply by 100 to get a percentage.

Question	Answer	Marks	Guidance
4 (a)	number of protons = number of electrons (e.g. 13)	1	Neutral atoms have an equal number of protons and electrons.
	number of neutrons = (28 – number of protons) (e.g. 15)	1	There could have been 14 protons and 14 neutrons!
4 (b) (i)	nuclei have same number of protons	1	This answer follows directly from the definition of isotopes.
4 (b) (ii)	but a different number of neutrons, or nucleons	1	
4 (b) (iii)	$\frac{Q}{m} = \frac{92 \times 1.60 \times 10^{-19}}{236 \times 1.67 \times 10^{-27}}$	1	The mark is for correct substitution of charge and mass values and a correct calculation.
4 (1) (1)	$= 3.7 \times 10^7 \text{ C kg}^{-1}$	4	
4 (b) (iv)		1	The number of protons and neutrons (given by the mass numbers for the nuclei) on each side is the same.
5 (a)	X = 225	1	Nucleon numbers must balance in the decay, and α is a helium nucleus with $A = 4$.
	Y = 88	1	Proton numbers must also balance, and $Z = 2$ for the α particle.
5 (b)	ratio (= $\frac{225}{4}$) = 56	1	The answer is a ratio of two masses and has no unit .
6 (a) (i)	a helium nucleus (or a doubly-ionised helium atom)	1	(i) tests your factual knowledge. An α particle consists of 2 protons and 2 neutrons, giving these
	Properties: • charge +2e • mass ≈ 4 units	2	charge and mass values.
6 (a) (ii)	$^{215}_{85}$ At $\rightarrow ^{211}_{83}$ Bi + α	2	1 mark for writing ²¹¹ ₈₃ Bi as the product nucleus and the second mark for the completed reaction equation.
6 (b) (i)	Relevant points include:	3	Electrons do not reside in the nucleus; the β^- particle is formed at the instant of decay. The antineutrino is necessary to explain the range of energies of the β^- particles that are emitted.
6 (b) (ii)	$^{99}_{42}\text{Mo} \rightarrow ^{99}_{43}\text{Tc} + \beta^- + \overset{-}{\text{v}}$	2	1 mark for inserting the missing values of 99 and 43, and 1 mark for including the antineutrino. In β^- decay A stays the same but Z increases by 1 (since a neutron changes into a proton).
7 (a) (i)	9.11 × 10 ⁻³¹ kg	1	The β^+ particle is a positron, with the same rest mass as an electron.

Question	Answer	Marks	Guidance
7 (a) (ii)			All 3 marks would : available for
	$f(=\frac{c}{h}) = \frac{3.00 \times 10^8}{8.30 \times 10^{-13}}$	1	direct use of $E = (\frac{hc}{\lambda})$, but you
	$(=3.61 \times 10^{20} \text{ Hz})$		must show your working whatever method you choose.
	$E (= hf) = 6.63 \times 10^{-34} \times 3.61 \times 10^{20}$	4	,
	(= 2.4 × 10-13 J)	1	
7 (a) (iii)		1	Since 1 eV = 1.60×10^{-19} J, it
, (a) (iii)	$E = \frac{2.39 \times 10^{-13}}{1.60 \times 10^{-13}}$	1	follows that 1 MeV is 10 ⁶ times larger.
	= 1.5 MeV	1	la gori
7 (b)	weak interaction	1	Always involved in β decay.
8 (a) (i)	electron	1	A positron is a 'positive electron',
			having the same mass and equal but opposite charge.
8 (a) (ii)	they annihilate, or destroy each other forming	1	2 photons are always needed
			when annihilation takes place.
	two gamma rays (or photons)	1	'Forming energy' would not be
8 (b)	energy released = 2 × 0.51 = 1.02 MeV	1	enough for the second mark. The antiparticle must have the
0 (b)	Chergy released = 2 × 0.51 = 1.02 MeV	'	same rest mass as the particle.
	$= 1.02 \times 1.60 \times 10^{-13} = 1.6 \times 10^{-13} \text{ J}$	1	The energy released is the total
			of the rest energies. The energy
			released could be greater than this if the particles were to meet
			with a significant amount of
			kinetic energy, so the value
			calculated is the minimum energy released.
9 (a) (i)	they annihilate, or destroy each other, or form	1	This is straightforward
	two photons		annihilation of a particle and its antiparticle.
9 (a) (ii)	the energy associated with the rest masses	1	Total energy includes both the
	must be added		kinetic energy and the rest mass energy of the two colliding
			particles. Photons have no rest
		_	mass.
9 (b)	There are 3 possibilities: the particles produced could	any 2	Annihilation can produce particles other than photons (e.g. muons)
	be more numerous		when the colliding particles have
	be more massive		a total energy greater than the
	have greater kinetic energy		rest masses of the particles that are produced.
10	weak interaction	1	
11 (a)	γ photon/electromagnetic force	2	1 mark for naming the exchange
			particle and the second mark for the corresponding interaction.

Question	Answer	Marks	Guidance
11 (b)	Possible roles are: transfers energy transfers momentum transfers force (sometimes) transfers charge	any 2	One mark for each named role.
12	A high energy γ photon is required	1	Energy must be sufficient to create at least the total rest masses of the particles produced.
	It is converted into a particle and its antiparticle	1	This occurs in the vicinity of another particle, such as a nucleus or an electron.
	Suitable example named, such as: • proton + antiproton • electron + positron	1	Only one example is needed.