AQA Physics

Question	Answer	Marks	Guidance
1 (a) (i)	the strong interaction	1	Kaons are produced by the strong force, but they decay via the weak interaction.
1 (a) (ii)	the weak interaction	1	
1 (a) (iii)	the strong interaction	1	Strangeness is sometimes conserved in the weak interaction, but not always.
1 (b) (i)	a baryon consists of 3 quarks	1	The question is about hadrons , so you have to consider both
	an antibaryon consists of 3 antiquarks	1	baryons and mesons.
	a meson consists of a quark + antiquark	1	
1 (b) (II)	the charges of the 3 quarks are: u: $+\frac{2}{3}$ d: $-\frac{1}{3}$ s: $-\frac{1}{3}$	1	You have to look at how a quark- antiquark combination can form a charge of either +1 or -1 and thus produce a charged meson
	2 of these must make a quark-antiquark combination with a charge of 1		Only these four arrangements are possible.
	a meson with a charge of +1 requires either $(u\overline{d})$ or $(u\overline{s})$	1	
	a meson with a charge of -1 requires either (\overline{ud}) or (\overline{us})	1	
2 (i)	hadrons: p, n, π ⁰	1	In all parts, you have to write down all the correct particles for the mark to be awarded.
2 (ii)	leptons: v_e , e^+ , μ^-	1	
2 (iii)	antiparticles: n, e⁺	1	
2 (iv)	charged particles: p, e^+ , μ^-	1	
3 (a) (i)	positron, neutron, neutrino and positive pion	2	The weak interaction acts on hadrons and on leptons when they decay. All 4 particles are required for 2 marks. You lose 1 mark for each error.
3 (a) (ii)	electron, proton, negative muon	2	Electromagnetic forces act only between charged particles. All 3 particles are required for 2 marks. You lose 1 mark for each error.
3 (b) (i)	$\mu^- \rightarrow e^- + \overline{v_e} + v_\mu$	1	You simply have to exchange the particles on the right hand side for their corresponding antiparticles.
3 (b) (ii)	difference: muon has a much greater rest mass	1	The rest mass of the muon is
	similarity: both are negatively charged, or both are leptons	1	electron.
4 (-)		0	Either answer will score the mark.
4 (a)	uaa	2	An incorrect answer that showed 3 quarks (at least one u and one d) would gain 1 mark out of 2
4 (b)	baryon, hadron	2	1 mark for each.

AQA Physics

Question	Answer	Marks	Guidance
5 (a) (i)	meson (not muon)	1	The particle consisting of $\overline{u}d$ is a negative pion, π^- . A muon is no longer regarded as a meson.
5 (a) (ii)	−1, or − 1.6 × 10 ⁻¹⁹ C, or − <i>e</i>	1	\overline{u} has a charge of $-\frac{2}{3}e$, and d
			has a charge of $-\frac{1}{3}e$, giving a
5 (2) (iii)	0	1	total of -e.
5 (a) (iii)	0		A meson is not a baryon.
5 (b)	baryon number: $0 \rightarrow 0 + 0$, so satisfied	1	All the particles in this interaction are leptons.
	lepton number: $-1 \rightarrow -1 + 1$, so not satisfied	1	Lepton numbers are given in the Data Booklet. Note that lepton conservation applies to each lepton family.
	charge: $+1 \rightarrow +1 + 0$, so satisfied	1	The neutrino has no charge.
6 (i)	three	1	Don't be put off by the unfamiliar sigma particle; the question is about general properties. A
0 (!!)			baryon always contains 3 quarks.
6 (11)	weak interaction	1	Strange particles always decay
6 (iii)	proton	1	All the other baryons decay into protons. The proton is the only stable baryon
7 (a)	hadrons experience the strong nuclear force (or they consist of quarks)	1	The weak interaction acts on both leptons and hadrons when they decay, but leptons do not experience the strong force.
7 (b)	subgroups: baryons and mesons	1	This part is testing factual knowledge alone. Particle physics
	a baryon consists of three quarks	1	contains a lot of facts.
	a meson is a quark-antiquark combination	1	
7 (c)	charge: $0 + 1 \rightarrow 1 + 0$, so obeyed	1	Lepton numbers are given in the
	lepton number: $0 + (-1) \rightarrow 0 + (-1)$, so obeyed	1	that $B = 1$ for a hadron.
	baryon number:1 + 0 \rightarrow 1 + 0, so obeyed	1	
8	contains two quarks	1	The evidence is that this is a
	ūd	1	meson, and so a quark-antiquark combination. The charge of quarks is given in the Data
	\overline{u} has charge of $-\frac{2}{3}e$, and d has charge of $-\frac{1}{3}$	1	Booklet.
	e, so the charge of π - is -1e		
9 (a)	symbol for an electron antineutrino, i.e. ($\overline{v_e}$)	2	The decay equation is similar to that for β decay. 1 mark would be awarded for any neutrino symbol.
			symbol.

AQA Physics

Question	Answer	Marks	Guidance
9 (b)	charge: $0 \to 1 + (-1) + 0$	1	All three conservation laws are
	baryon number: $1 \rightarrow 1 + 0 + 0$	1	possible.
	lepton number: $0 \rightarrow 0 + 1 + (-1)$	1	
9 (c)	total kinetic energy required = 2 × rest energy of a proton = 2 × 938 = 1880 MeV	1	The reaction creates a proton and an antiproton, so the colliding particles need enough kinetic
	$E_{\rm K}$ required by one proton = $\frac{1}{2} \times 1880$	1	energy to create the total rest energies of these new particles.
10 (a) (i)	antibaryon	2	1 mark would be awarded for baryon or hadron.
10 (a) (ii)	the neutral pion, π^0	1	You need to learn facts like this.
10 (b) (i)	us	2	Refer to the Data Booklet. A strangeness of +1 requires ຂາ
			strange antiquark, charge + $\frac{1}{3}$ e.
			The kaon's charge is +e, requiring the accompanying q_{1} ark to be an up quark, charge $\pm \frac{2}{2}e_{1}$ and the awarded
			for any quark-antiquark combination.
10 (b) (ii)	weak interaction	1	Strange particles, such as the kaon, decay via the weak interaction.
10 (b) (iii)	$K^- \rightarrow \mu^- + \overline{v_{\mu}}$	1	Just change the two particles on the right hand side to their corresponding antiparticles.
10 (b) (iv)	leptons	1	These parts again test your knowledge of the facts.
10 (b) (v)	muon has a much greater mass	1	<u> </u>
11 (a)	baryon number: $0 + 1 \rightarrow 1 + 0$, so obeyed	1	A kaon is a meson. Mesons are hadrons but they are not baryons.
	lepton number: $0 + 0 \rightarrow 0 + 0$, so obeyed	1	No leptons are involved in this process.
	charge: 0 + 1 \rightarrow 0 + 1, so obeyed	1	K^0 is a neutral kaon, π^+ is a positive pion.

AQA Physics

Question	Answer	Marks	Guidance
11 (b)	K^0 : ds	1	Refer to the Data Booklet. A strangeness of +1 requires
			strange antiquark, charge $+\frac{1}{3}e$.
			The neutral kaon's charge is zero, requiring the accompanying $qu rk$ to be a down quark, charge $-\frac{1}{3}e$.
	π*: u d	1	A charge of +1 <i>e</i> and a strangeness of 0 is required from a quark-antiquark combina ^{+:} on. An up quark has charge + $\frac{2}{3}e$
			and a down antiquark $+\frac{1}{3}e$.
	p: u u d	1	$\frac{2}{3}e + \frac{2}{3}e + (-\frac{1}{3}e) = +1e$, as
	correct number of quarks and antiquarks in each of the above three answers	1	This acts as a bonus mark if you get all three correct, but it can also be a consolation mark for those who get them almost correct.