Oxford A Level Sciences

AQA Physics

7 On the move Answers to practice questions

Question	Answer	Marks	Guidance
1 (a)	$100 \text{ km h}^{-1} = \frac{100 \times 1000}{3600} = 27.8 \text{ m s}^{-1}$	1	Consistent units must be substituted in the uniform
	using <i>v</i> = <i>u</i> + <i>a t</i> gives 27.8 = 0 + 5.8 <i>a</i>	1	acceleration equations. 100 km h^{-1} must be changed into m s ⁻¹ .
	\therefore acceleration <i>a</i> = 4.8 m s ⁻²	1	
1 (b)	using $s = \frac{1}{2} (u + v)t$ gives	1	When using the uniform acceleration equations, it is safest to summarise all the quantities
	$s = \frac{1}{2} (0 + 27.8) \times 5.8$		you know at the start and identify the ones you need to calculate. This makes it easier to choose
	\therefore distance s = 81 m	1	the most appropriate equation.
2 (a)	AB: uniform acceleration	1	Acceleration is the gradient of a <i>v-t</i> graph; here it is positive and constant.
	BC: constant velocity	1	The gradient is zero, and so the acceleration is zero and the velocity is not changing.
	CD: uniform deceleration	1	The gradient is negative and constant; the velocity is decreasing uniformly with time.
	DE: stationary	1	The gradient is zero and the velocity is also zero.
	EF: uniform acceleration in the opposite direction	1	The gradient is negative and constant, whilst the velocity is negative and increasing uniformly.
2 (b)	displacement is equal to the area enclosed by the graphs and the time axis	1	This is another feature of a <i>v-t</i> graph that you need to know.
2 (c)	distance is a scalar and is represented by the total area under both the positive and negative portions of the graph	1	The toy train travels a certain distance forward and stops. It then travels an equal distance backwards, returning to its
	whereas displacement is a vector and the areas above and below the $v = 0$ line are equal and therefore cancel	1	starting point. Its displacement from the starting point is zero but it has travelled a distance out, and the same distance back.
3 (a)	using <i>v</i> = <i>u</i> + <i>a t</i> gives 12 = 4 + 6.0 <i>a</i>	1	Or use $\frac{\Delta v}{\Delta t}$.
	\therefore acceleration <i>a</i> = 1.3 m s ⁻²	1	
3 (b)	Graph to show: • axes labelled 'speed/m s ⁻¹ ' (vertically) and 'time/s' (horizontally) with points (0, 4) and (6,	2	By convention, time is plotted horizontally. You are told that the acceleration is uniform, meaning
	12) both marked		that the line must have a constant
3 (c)	these two points joined by a straight line distance travelled = area under graph	1	gradient (i.e. be straight). In this example the area is that of a trapezium instead of a simple
	= area of trapezium with vertical sides of 4 m s ⁻¹	1	triangle. This solution is equivalent to using
	and 12 m s ⁻¹ = $\frac{1}{2}$ × (4 + 12) × 6.0		$s = \frac{1}{2} (u + v)t.$
	= 48 m		$S = \frac{1}{2} (u + v)t.$

Oxford A Level Sciences

AQA Physics

7 On the move Answers to practice questions

Question	Answer	Marks	Guidance
4 (a) (i)	using $v = u + a t$ gives $0 = 4.5 + 3600 a$ \therefore acceleration $a = -1.3 \times 10^{-3} \text{ m s}^{-2}$ and deceleration = $1.3 \times 10^{-3} \text{ m s}^{-2}$	1	Note that 1 h = 3600 s. A deceleration is a negative acceleration. A negative value for <i>a</i> (which comes from a correct substitution into $v = u + a t$) leads to a positive value for
4 (a) (ii)	using $s = \frac{1}{2} (u + v)t$ gives $s = \frac{1}{2} (4.5 + 0) \times 3600$	1	deceleration. 'While slowing to a stop' means 'until its final speed <i>v</i> is 0'.
4 (b)	 distance s = 8100 m Graph to show: axes labelled 'distance/m' (vertically) and 'time/s' (horizontally) and line showing distance increasing with time gradual curve of decreasing slope 	1 2	It is important to show clearly what you are plotting by labelling the axes properly. The speed of the tanker is assumed to decrease uniformly. Speed is equal to the gradient of a distance-time graph; hence the gradient decreases. If the line is drawn properly, the final part ought to be horizontal.
4 (c)	 Relevant points include: gradient of graph = speed speed decreases giving a decreasing gradient gradient is zero when stationary 	2	
5 (a) (i)	using $v = u + a t$ gives 29 = 0 + 2.0 a \therefore acceleration $a = 14.5 \text{ m s}^{-2}$	1	Part a gives further practice in the use of the uniform acceleration equations. In (iii) the cheetah is moving at constant speed, so the simpler equation 'distance = (speed) × (time)'suffices. Interestingly, the cheetah is accelerating at about 1.5 g .
5 (a) (ii)	using $s = \frac{1}{2} (u + v)t$ gives $s = \frac{1}{2} (0 + 29) \times 2.0 = 29 \text{ m}$	1	
5 (a) (iii)	using distance =(speed) × (time) gives $s = 29 \times 15 = 435$ m	1	
5 (b) (i)	 Second graph drawn to show: starting at 0.5 s (i.e. reaction time) straight line from (0.5, 0) to (2.5, 25) horizontal straight line beyond 2.5 s 	3	This graph is of a similar shape to the original one, but it starts later and is lower, displaced to the right.
5 (b) (ii)	distance travelled by antelope in 17 s = $(\frac{1}{2} \times 2.0 \times 25) + (14.5 \times 25)$ = 387.5 (= 390) m	1	Distance travelled = area under graph. The area under the graph consists of a triangle and a rectangle.

Oxford A Level Sciences

AQA Physics

7 On the move Answers to practice questions

Question	Answer	Marks	Guidance
5 (b) (iii)	distance travelled by cheetah in 17 s = $(\frac{1}{2} \times 2.0 \times 29) + (15 \times 29) = 464$ m distance apart = $(100 + 387.5) - 464$ = 23.5 (= 24) m	1	You have to do a lot of work for this last mark. The steps taken in (ii) are repeated, but this time for the cheetah, and then you must remember that the antelope was 100 m ahead of the cheetah at the start.
6 (a)	Using $s = u t + \frac{1}{2} a t^2$ gives $35 = 0 + (\frac{1}{2} \times a \times 2.7^2)$ \therefore acceleration of free fall $g (= a)$ $= 9.6 \text{ m s}^{-2}$	1	The lump of lead is released (not thrown downwards), telling you that its initial velocity <i>u</i> is zero. <i>s</i> and <i>t</i> are known; you have to find <i>a</i> .
6 (b)	a lower value would be obtained for <i>g</i> because air resistance has a greater effect on the tennis ball	1	Strictly speaking, an object is in free fall only if there is no air resistance. Although these two objects are
	resulting in a smaller resultant downwards force on the tennis ball	1	the same size, air resistance has a much greater effect on the tennis ball because it is lighter.
6 (c)	 Second graph to show: a curve of decreasing gradient, always below the original line initial gradient the same as the original line, but second graph finishing at a later time 	2	The tennis ball experiences a decreasing acceleration: hence its velocity continues to increase but by progressively smaller amounts. The tennis ball therefore takes a longer time to fall to the ground.
7 (a)	horizontal velocity remains 70 m s ⁻¹	1	If air resistance is ignored, the horizontal velocity must be unaffected.
7 (b)	using $v = u + a t$ gives vertical velocity $v_V = 0 + (9.81 \times 2.0)$ $= 19.6 \text{ m s}^{-1}$	1	The vertical motion is accelerated at g , which is constant. The uniform acceleration equations can therefore be applied.
7 (c)	resultant velocity $V = \sqrt{(v_v^2 + v_H^2)}$ = $\sqrt{(19.6^2 + 70^2)} = 73 \text{ m s}^{-1}$ direction is given by $\tan \theta = \frac{19.6}{70}$ from which $\theta = 15.6^\circ$ to the horizontal	1	The resultant velocity is found by adding its vector components. A quick sketch of the vectors may help you to see which trigonometric ratio to use.