AQA Physics

8 Newton's laws of motion Answers to practice questions

Question	Answer	Marks	Guidance
1 (a) (i)	To find acceleration a, given values for <i>u</i> , <i>v</i> and s, rearrange $v^2 - u^2 = 2as$ to give $a = \frac{v^2 - u^2}{2s} = \frac{0 - 20^2}{2 \times 40}$	1	Tests your ability to use the given data to calculate the deceleration of a child in a car that decelerates to a standstill and to calculate the force on the child due to his or
	= -5.0 m s ⁻²	1	her seat belt.
1 (a) (ii)	To find the force <i>F</i> on the child, use $F = ma = 15 \times 5.0 = 75 \text{ N}$	1	
1 (b)	She would have continued to move forward as the car slowed down and she would have collided with the back of a front seat or with the front windscreen of the car.	1	Requires knowledge and understanding of physics to be used in the context of UK safety legislation to explain why child car seats make improve safety.
	The impact time would have been much less so the impact force would have been much greater.	1	
1 (c)	The stopping distance would be much less at 20 mph than at 30 mph.	1	How Science Works also features in (c) which asks students to discuss why a 20 mph speed limit
	This is because the braking distance depends on the square of the speed so it would be reduced by more than half i.e. (20/30) ² .	1	near a school is better than a 30 mph speed limit. Any general statements in the answer (e.g. the braking distance is less)
	Fewer accidents would occur because cars travelling at 20 mph would stop in a much shorter distance than cars at 30 mph.	1	needs to be backed up with a physics explanation.
2 (a)	 Relevant points include: when at constant speed, resultant force is zero (or forces are balanced) weight and tension must have equal magnitudes 	3	First law: a body travelling at constant velocity is equivalent to one that is at rest, requiring no resultant force to act on it.
	 but act in opposite directions a correct application of either Newton's first or second law of motion 		Second law: from $F = m a$, a body travelling at constant velocity is not accelerating and so $F = 0$, i.e. there is no resultant force.
2 (b) (i)	maximum acceleration is produced when resultant force is a maximum; $F_{max} = 12.0 + 8.0 = 20 \text{ N}$	1	The maximum force that can be applied to the body is achieved by adding the forces in the same direction along a straight line. The
	use of $F = ma$ gives a = $\frac{F}{m} = \frac{20}{6.5} = 3.1 \text{ m s}^{-2}$	1	minimum force is achieved by adding these vectors in opposite directions along a straight line.
			In this instance, any magnitude of force between 4 N and 20 N could be achieved by adding the 12 N and 8 N forces at an angle to each other, using vector addition.

AQA Physics

8 Newton's laws of motion Answers to practice questions

Question	Answer	Marks	Guidance
2 (b) (ii)	minimum acceleration is produced when resultant force is a minimum; $F_{min} = 12.0 - 8.0 = 4.0 \text{ N}$	1	
	use of $F = ma$ gives acceleration $a = \frac{F}{m} = \frac{4.0}{6.5} = 0.62 \text{ m s}^{-2}$	1	
3 (a)	acceleration = gradient of graph = $\frac{13.5}{5.0}$	1	Alternatively, it would be acceptable to calculate the acceleration by using $v = u + a t$,
		1	taking values for <i>v</i> and <i>t</i> from a point on the graph.
3 (b) (i)	= 2.7 (± 0.1) m s ⁻² use of F = ma gives mass of car $m = \frac{F}{a} = \frac{2.0 \times 10^3}{2.7}$	1	Credit would be given in (b) for the correct application of $F = ma$, no matter how wrong your
3 (b) (ii)	= 740 kg resistive force = 2.0×10^3 (because resultant	1	answer to (a) had been. After 40 s the car is travelling at
	force on car is zero)		constant velocity (28 m s ^{-1}). The forces acting on it are balanced.
4 (a) (i)	use of F = ma gives acceleration a = $\frac{F}{m} = \frac{1.8 \times 10^3}{900}$ = 2.0 m s ⁻¹	1	Another simple exercise in substituting the given values in F = ma and working out the result.
4 (a) (ii)	use of $v = u + a t$ gives $v = 0 + (2.0 \times 8.0) = 16 \text{ m s}^{-1}$	1	Questions involving $F = ma$ are often combined with further practice on the uniform acceleration equations. But be aware of the fact that they only apply when the acceleration is constant.
4 (a) (iii)	use of $s = u t + \frac{1}{2} a t^2$ gives distance $s = 0 + (\frac{1}{2} \times 2.0 \times 8.0^2)$ = 64 m	1	
4 (b) (i)	resultant force decreases	1	The propulsive force provided by the engine is opposed by
	because air resistance increases as the car's speed increases	1	increasing resistive forces as the car speeds up.
4 (b) (ii)	 Relevant points include: eventually the propulsive force and the resistive force are equal in magnitude resultant force is zero <i>F</i> = 0 means there is no acceleration (or speed remains constant) a correct application of either Newton's first or second law of motion 	3	First law: a body travelling at constant velocity is equivalent to one that is at rest, requiring no resultant force to act on it. Second law: from $F = m a$, a body travelling at constant velocity is not accelerating and so $F = 0$, i.e. there is no resultant force.
5 (a) (i)	270 × 4 = 1080 kN	1	There are four identical engines. When substituting in $F = ma$, note once more that the force must be in N and not in kN.

AQA Physics

8 Newton's laws of motion Answers to practice questions

Question	Answer	Marks	Guidance
5 (a) (ii)	use of F = ma gives	1	
	acceleration $a = \frac{F}{m} = \frac{1.08 \times 10^{6}}{3.2 \times 10^{5}}$		
		1	
5 (b) (i)	= 3.38 m s^{-2} use of $v = u + a t$ gives $90 = 0 + 3.38 t$	1	A take-off speed of 90 m s ⁻¹ is
- (-) ()	5		324 km h^{-1} (about 200 miles per
	∴ time to reach take-off speed = 27 s	1	hour).
5 (b) (ii)	resultant force on aircraft $5 $	1	The frictional force greatly
	$F_{res} = ma = 3.2 \times 10^5 \times 2.0 = 6.4 \times 10^5 \text{ N}$ $F_{res} = (\text{force of engines}) - (\text{frictional force})$	1	reduces the overall propulsive effect on the aircraft, decreasing
	\therefore frictional force = 1080 - 640	1	the acceleration considerably.
	= 440 kN		
5 (c)	use of $v^2 = u^2 + 2 a s$ gives	1	For safety reasons, the runway
	$90^2 = 0 + (2 \times 2.0 \times s)$	4	needs to be longer than this. A
	∴ minimum length of runway = 2025 m = 2.03 km	1	typical modern intercontinental airport has a main runway about
	= 2.03 Km		3 km long.
5 (d)	using $v = u + a t$	1	The time required is from the
	gives 260 = 90 + 2.0 t		point of take-off (at 90 m s ⁻¹) and
	time to cruising speed $t = 85$ s	1	not from when the aircraft was at
5 (e)	Relevant points include:	2	vest. When cruising, this aircraft moves
5 (8)	 (vertically) lift = weight, so flight is level 	-	at a constant horizontal velocity.
	 (horizontally) thrust = drag, so no 		It is obvious that the vertical
	acceleration		forces must be balanced.
	 no resultant force either vertically or horizontally 		The horizontal forces are
	nonzontany		demonstrating Newton's laws of
			motion: no acceleration means no
			resultant force is acting.
6 (a)	component of weight parallel to ramp	1	It usually helps to indicate the
	= $W \sin \theta$ = 7.2 × 103 sin 30° = 3.6 × 103 N		forces on a quick sketch. The angle between the vertical and a
	- 0.0 × 100 N		normal to the surface of the ramp
			is equal to the angle of the ramp.
6 (b)	mass of car and passengers	1	Unusually, you are provided with
	$M = \frac{W}{q} = \frac{7.2 \times 10^3}{9.81} = 734 \text{ kg}$		a value for the weight when $F =$
	use of $F = ma$ gives deceleration	1	<i>ma</i> requires use to use the mass .
	$a = \frac{F}{m} = \frac{3.6 \times 10^3}{734} = 4.90 \text{ m s}^{-2}$		The component of the weight acts
	$a = \frac{1}{m} = \frac{1}{734} = 4.90 \text{ m s}^2$		down the ramp as the car moves
			up the ramp.
			This component therefore
			provides a decelerating force.
6 (c)	use of $v^2 = u^2 + 2 a s$ gives	1	The decelerating force remains
. ,	$0 = 182 + (-2 \times 4.90 \times s)$		constant as the car travels up the
	\therefore length of ramp s = 33 m	1	ramp, so you can use the uniform
			acceleration equations.

AQA Physics

8 Newton's laws of motion Answers to practice questions

Question	Answer	Marks	Guidance
6 (d)	 Relevant points include: frictional forces act on car and passengers these increase the resultant force acting down the ramp therefore the deceleration is greater energy is lost as heat 	2	The frictional forces acting include air resistance and friction in the bearings of the fairground car's wheels. These forces contribute to a greater force down the ramp, producing a greater deceleration. Hence the car stops more quickly and covers a smaller stopping distance.

© Oxford University Press 2015 This resource sheet may have been changed from the original. www.oxfordsecondary.co.uk/acknowledgements