Oxford A Level Sciences

AQA Physics

11 Materials Answers to practice questions

Question	Answer	Marks	Guidance
1 (a)	the density of a material is the mass per unit volume	1	Quoting the equation density = (mass/ volume) would be acceptable.
1 (b) (i)	volume of copper = $0.70 \times 0.80 \times 10^{-3}$ = $0.56 \times 10^{-3} \text{ m}^3$	1	To find the mass of each constituent metal in the alloy you must first find the volume of each
	mass of copper = $\rho_C V_C = 8.9 \times 10^3 \times 0.56 \times 10^{-3}$	1	metal that is required.
	= 5.0 kg mass of zinc = $\rho_Z V_Z = 7.1 \times 10^3 \times 0.30 \times 0.80 \times 10^{-3}$	1	the mass of copper, you simply repeat the same steps for zinc.
1 (b) (ii)	mass of brass in the rod = $5.0 + 1.7 = 6.7$ kg	1	The density of brass is the total
	density of brass = $\frac{\text{mass}}{\text{volume}} = \frac{6.7}{0.80 \times 10^{-3}}$ = 8.4 × 10 ³ kg m ⁻³	1	mass divided by the total volume for the rod made from 70 % of copper and 30 % of zinc by volume.
2	force applied to spring = weight of lorry = mg = 1.2 × 10 ³ × 9.81 = 1.18 × 10 ⁴ N	1	There are two things to bear in mind in this question. The first is
	energy stored = $\frac{1}{2}$ F ΔL	1	weight of the lorry, not its mass.
	$=\frac{1}{2} \times 1.18 \times 10^{4} \times 0.030$		I ne second is that the energy
	= 180 J	1	stored in a spring is $\frac{1}{2} F \Delta L$, not just $F \Delta L$.
3 (a) (i)	material X obeys Hooke's law until it fractures	1	Hooke's law is only obeyed if stress ∝ strain, requiring the
	because stress is proportional to strain over the whole line	1	graph to be a straight line through the origin. The graph for Y curves.
3 (a) (ii)	Y is the weaker material	1	A weaker material will fracture at a lower value of stress.
	because its breaking stress is lower than that of X	1	
3 (a) (iii)	material Y is ductile	1	Material X is brittle, because it fractures without showing any
	because it exhibits plastic behaviour	1	plastic deformation.
3 (a) (iv)	material Y has the greater strain energy for a given tensile stress	1	You may need to draw (or imagine the effect of) a horizontal straight line at a particular value
	because the area under its graph is greater for a given tensile stress	1	of tensile stress in order to spot this.
3 (b) (i)	cross-sectional area = 0.64 mm^2 = $0.64 \times 10^{-6} \text{ m}^2$	1	It is easy to get this wrong. Note that $1 \text{ mm}^2 = 1 \text{ mm} \times 1 \text{ mm}$
	tension in cord	1	$= (10^{-3})^2 = 10^{-6} \text{ m}^2$
	$F = \frac{E_Y A \Delta L}{L}$		The tension is the stretching
	$=\frac{2.0\times10^7\times0.64\times10^{-6}\times30\times10^{-3}}{160\times10^{-3}}$		force, which you can find from the
	= 2.4 N	1	in the Data Booklet).
3 (b) (ii)	energy stored in cord	1	This is the energy stored at this extension , which is (190 - 160)

Oxford A Level Sciences

AQA Physics

11 Materials Answers to practice questions

Question	Answer	Marks	Guidance
	$=\frac{1}{2}F\Delta L$		mm = 30×10^{-3} m.
	2		
	$=\frac{1}{2} \times 2.4 \times 30 \times 10^{-3}$	1	
	$= 3.6 \times 10^{-2} \text{ J}$		
4 (a)	Graph plotted to include:	4	The scales you choose should
	 all 12 points plotted correctly 		paper, so that you are using more
	correct graph for increasing loads, linear up		than half of the area of the paper.
	to about 80 N and with curved part for higher		$1 \text{ cm} \equiv 10 \text{ N}$ for forces and 1 cm
	IOADS >80 N Correct linear graph for decreasing loads		= 1 mm for extensions would be suitable on normal A4 metric
	with permanent extension for zero load		graph paper. Always plot in pencil
			in case you make mistakes.
4 (b)	Relevant points include:	4	Once you have seen and
	behaves elastically)		stress-strain) graph for a material
	• this continues up to the limit of proportionality		taken beyond its elastic limit,
	the elastic limit is reached beyond the limit of		interpreting the graph should be
	 the wire then undergoes plastic deformation 		of elasticity it is conventional to
	 which produces a permanent extension 		plot the independent variable
	extension varies linearly with load as the load		(load) on the vertical axis and the
	Is decreased		on the horizontal axis. This is
			contrary to the normal convention
			when plotting graphs.
4 (C)	gradient of graph = $\frac{F}{M} = \frac{80}{7.2 \times 10^{-3}}$	1	You should find the gradient by taking readings from the line on
	$= 1.11 (\pm 0.03) \times 10^4 \text{ N m}^{-1}$		your graph, not from the points in
	Young modulus $F_{y} = \frac{FL}{F} = \frac{L}{x}$ gradient		the table you are given. (Points
	$A\Delta L$ A gradient	1	may not be on the line.) Don't forget to show your working, and
	$=\frac{3.0 \times 1.11 \times 10}{2.8 \times 10^{-7}} = 1.2 \times 10^{11} \text{ Pa}$	1	don't forget to include the unit of
			the Young modulus (N m^{-2} would
5 (i)	E.I E.I		be acceptable).
5 (1)	extension $\Delta L = \frac{I_{SL}}{E_{SA}} = \frac{I_{BL}}{E_{BA}}$ is the same for both	1	rearrangement of the Young
	wires, as are L and A		modulus equation to make its
	hence $\frac{E_s}{E} = \frac{F_s}{E}$		subject ΔL . Then both L and A
	E_B F_B		same for these two wires.
5 (ii)	$F_{s} = E_{s} = 2.0 \times 10^{11} = 2.0$	1	There is no need to go back to
	$F_B = E_B = 1.0 \times 10^{11} = 2.0$		first principles: you have already
	$\therefore E_0 = 2 E_0$	1	in part (i), so you just have to
	······································	•	apply it. Note that the total of the
	$F_{\rm S}$ + $F_{\rm B}$ = 15 gives $F_{\rm S}$ = 10 N	1	two forces must equal the weight
5 (iii)	extension ΔI	1	Once again you should have
	_ <u>FsL</u> 10 × 1.5	·	done most of the work for this
	$= \frac{1}{E_{s}A} = \frac{1}{2.0 \times 10^{11} \times 1.4 \times 10^{-6}}$		already in part (i). The extension
	$= 5.4 \times 10^{-3} \text{ m}$	1	will be the same whether you
			the data for the brass.