Question number	Answer	Marks	Guidance
1 (a)	An unsaturated compound contains double or triple covalent bonds.	B1	
	A hydrocarbon is a compound of carbon and hydrogen only	B1	
1 (b)	a : 109.5°	B1	
	b : 120°	B1	
1 (c)	H. H	B1 x 2	
	π bond p-orbitals p-orbitals p-orbitals overlap above and below the plane of the carbon atoms		
	1 mark for sideways overlap of p orbitals		
	1 mark for diagram showing π bond		
2 (a)	An electrophile is an electron pair acceptor	B1	
2 (b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 x 4	
	1 mark for curly arrow from C=C to Br ^{δ+} of Br ₂		
	1 mark for curly arrow from Br–Br and correct dipole		
	1 mark for correct carbocation AND curly arrow from Br ⁻ to C ⁺		
	1 mark for product		
3 (a) (i)	H CH ₃ H CH ₃ H CH ₃ C C C H H C C C H H C C C H H C C C C	B1 x 3	Curly arrow must start from bond and go to correct atom DO NOT ALLOW partial charges on carbon–carbon double bond
	1 mark for curly arrow from C=C to l ^{ŏ+} of lBr		DO NOT ALLOW δ+ on carbon atom
	1 mark for curly arrow from I–Br and correct dipole		The positive charge must be associated with the carbon
	1 mark for correct carbocation AND curly arrow from Br ⁻ to C ⁺		atom and not with a bond Make certain the carbonium ion includes the iodine atom

OCR Chemistry A

Question	Answer	Marks	Guidance
number			Curly arrow must come from any lone pair or the negative sign of the bromide ion The lone pair on the bromide ion does not need to be shown
3 (a) (ii)	Electrophilic addition	B1	
3 (a) (iii)	H CH ₃ H—C—C—H Br I	B1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) eg CH ₂ BrCHICH ₃
4 (a)	1,2-dibromoethane: Use bromine $C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$ bromoethane: Hydrogen bromide $C_2H_4 + Br_2 \rightarrow C_2H_5OH$ Ethanol: steam with an acid catalyst (e.g. conc H_2SO_4) $C_2H_4 + H_2O \rightarrow C_2H_5OH$ Name of mechanism: electrophilic addition $H_1 \rightarrow H_2 \rightarrow H_3$ $H_4 \rightarrow H_4 \rightarrow H_4$ $H_5 \rightarrow H_4 \rightarrow H_5$ $H_6 \rightarrow H_6$ $H_7 \rightarrow H_7 \rightarrow H_7$ $H_7 \rightarrow H_7 \rightarrow H_7 \rightarrow H_7$ $H_7 \rightarrow H_7 \rightarrow H_7 \rightarrow H_7 \rightarrow H_7$ $H_7 \rightarrow H_7 \rightarrow H_7 \rightarrow H_7 \rightarrow$	B1 B	ALLOW reactants even from incorrect equations ALLOW reactants or conditions over the arrow ALLOW Br ₂ mark from the mechanism even if the mechanism is incorrect IGNORE conditions unless they would lead to a different reaction with ethane IGNORE conditions unless they would lead to a different reaction with ethane ALLOW temperature range between 100–400°C if quoted IGNORE reference to pressure IGNORE hydrolysis Hydration is not sufficient but DO NOT ALLOW Hydrogenation ALLOW H ₂ SO ₄ OR H ₃ PO ₄ OR H ⁺ DO NOT ALLOW HCI, HBr etc. ALLOW two stage process e.g. react with HBr one mark followed by KOH(aq) one mark

Question	Answer	Marks	Guidance
number			Curly arrow must start from the double bond and not a carbon atom and go the Br ⁵⁺ ; other curly arrow must start from Br–Br bond. ALLOW attack of Br–Br if dipoles not shown DO NOT ALLOW attack of Br ⁵⁻
			Dipole must be partial charge and not full charge DO NOT ALLOW any other partial charges eg on the double bond
			Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle) All atoms in the carbocation must be shown
			Br ⁻ curly arrow must come from one lone pair on Br ⁻ ion OR from minus sign on Br ⁻ ion Lone pair does not need to be shown on Br ⁻ ion
			ALLOW mechanism which goes via a cyclic bromonium ion instead of the carbocation
4 (b)	C=C 120°	B1	IGNORE any name of shape given
	H H H H H H H H H H H H H H H H H H H	B1	ALLOW 115–125° ALLOW even if it is the C–C– H shown on a diagram.
	Bond angle: 120°	B1	ALLOW three or four electron pairs repel OR three or four bonds repel IGNORE does not have any lone pairs DO NOT ALLOW atoms repel / electrons repel DO NOT ALLOW has lone pair which repels more
4 (c) (i)	H CH_2CH_3 $C \longrightarrow C$ H_3C H	B1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

OCR Chemistry A

Question	Answer	Marks	Guidance
number			
4 (c) (ii)	H CH ₂ CH ₃ H CH ₂ CH ₃	B1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW CH ₃ and C ₂ H ₅ groups above or below chain ALLOW bond to ethyl and methyl group to any part of ethyl or methyl group IGNORE any brackets drawn ALLOW two or more repeat units but has to have a whole number of repeat units (ie does not have to be two) 'End bonds' MUST be shown and can be dotted
			IGNORE n
5 (a)	H CH ₃ H -C -C - CH ₃ H H H H H ₂ Ni H CH ₃ H -C -C - CH ₃ H Br Br	B1 x 4	ALLOW skeletal formula OR displayed formulae IGNORE molecular formulae IF two answers given e.g. name and structure then both must be correct to be given a mark
	H CH₃		ALLOW methylpropane OR (CH ₃) ₃ CH
	H CH ₃		ALLOW 1,2-dibromo- methylpropane OR CH ₂ BrCBr(CH ₃) ₂
	mixture of isomers 1 mark for each product		ALLOW 1-bromo- methylpropane OR CH ₂ BrCH(CH ₃) ₂
			ALLOW 2-bromo- methylpropane OR CH ₃ CBr(CH ₃) ₂
			ALLOW ecf if wrong carbon skeleton is used in all of the structures mark first structure wrong and then apply ecf for the rest

Question	Answer	Marks	Guidance
number			
5 (b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 x 3	Curly arrow must start from the double bond and not a carbon atom, other curly arrow must start from CI—CI bond
	1 mark for curly arrow from C=C to Cl ^{δ+} of Cl ₂ 1 mark for curly arrow from Cl–Cl and correct dipole 1 mark for correct carbocation AND curly arrow from Cl [−] to C ⁺		ALLOW curly arrow from any part of chloride ion The chloride ion does not need to show a lone pair Dipole must be partial charge and not full charge Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle) ALLOW carbocation on carbon 1 where electrophile attacks carbon 2 i.e. †CH2CCI(CH ₃) ₂
6 (a)	Structural isomers are compounds with the same molecular formula	B1	ALLOW same molecular formula but different structures
	but different structural formulae	B1	Second marking point is DEPENDENT on first mark
	Stereoisomers have same structural formulae	B1	ALLOW compounds with the
	but different arrangements in space	B1	same structure Second marking point is
	The double C=C bond which does not rotate	B1	DEPENDENT on first mark
	The alkene needs to have two different groups attached to each carbon atom of C=C bond	B1	This is the QWC mark
	Evidence for molecular formula: F , G and H have molecular formula of C ₅ H ₁₀	B1	IGNORE wrong names of F, G and H
	as M_r is $5 \times 12 + 10 \times 1 = 70$	B1 x 4	ALLOW structural or displayed formulae for F, G and H e.g. H is CH ₃ CH ₂ CH ₂ CHCH ₂
	E isomer F and G: 1 mark for each structure of F, G and H (3 marks total) E and Z isomers identified		ALLOW identification using trans and cis and ALLOW this marking point as identification of another example of identifying E/Z or cis and trans if not done for F and G ALLOW one mark if no
			structures drawn but correct names given for F, G and H

Question	Answer	Marks	Guidance
number		iiidi K3	- Siddiloo
			i.e <i>E</i> -pent-2-ene, <i>Z</i> -pent-2-ene and pent-1-ene ALLOW ecf on structures if wrong molecular formula used or consistent error or slip such as having just sticks
7	C: H = 82.8/12.0: 17.2/1 = 6.9: 17.2	B1	
	Empirical formula = C_2H_5	B1	
	$\begin{aligned} &\text{Molecular formula} = C_2 H_5 \times 58/29 \\ &= C_2 H_5 \times 2 = C_4 H_{10} \end{aligned}$	B1	
	H CH ₃ H CH ₃ H A B H CH ₃ H H CH ₃ H C C C C C H H H H H H OH H C D 1 mark for each structure	B1 x 4	
	B : $C_4H_8 + H_2 \rightarrow C_4H_{10}$	B1	
	C and D : $C_4H_8 + H_2O \rightarrow C_4H_9OH$	B1	
8	H CH ₃ H ₃ C CH ₃ C=C C H ₃ C H H H H E isomer Z isomer Q and R: 2 marks for Q and R identified	B1 x 3	
	1 mark for correct labelling of E and Z isomers		
9 (a)	Addition polymerisation	B1	
9 (b)	Propene	B1	

Question number	Answer	Marks	Guidance
9 (c)	H H H H	B1	
10	H CH3 H CH2CH3 C=C H CH3 H H H3C CH3 methylpropene but-1-ene C=C H T Dut-2-ene H Z but-2-ene 1 mark for each structure	B1 x 4	
	Methylpropene, but-1-ene and but-2-ene are structural isomers	B1	
	But-2-ene has E and Z stereoisomers	B1	
11 (a)	CI H H H $C = C$ $C = C$ $E \text{ isomer}$ CI C_2H_5 $E \text{ isomer}$ CI C_2H_5 $C = C$ C_2H_5 $C = C$ $C = $	B1	
11 (b)	CI Br H_3C $C = C$ $C = C$ H_3C CH_2CH_3 CI CH_2CH_3 Z isomer E isomer 1 mark for correct E/Z assignment + stereoisomer	B1	
11 (c)	H_3C H C_2H_5 H C_2H_5 H C_2H_5 C	B1	

OCR Chemistry A

Question	Answer	Marks	Guidance
number			
11 (d)	H CH ₂ CH ₂ OH H ₃ C CH ₂ CH ₂ OH C=C C C C C Z isomer 1 mark for correct E/Z assignment + stereoisomer	B1	
12	H CHCICH3 H CHCICH3 T T T T T T T T T T T T T T T T T T	B1 x 2	