AQA Physics

Question	Answer	Marks	Guidance
1 (a)	Taking natural logs on both sides of $V = Vo$ $e^{-t/C}$ gives ln $V = \ln Vo + \ln (e^{-t/CR})$	1	
	As ln (e ^{-t/CR}) = $\frac{t}{CR}$	1	
	then ln V = ln $V_0 - \frac{t}{CR} = a - bt$		
	hence $a = \ln V_0$	1	
	and $b = \frac{1}{CR}$	1	
1 (b) (i)	t/s 210 240 270 300 mean 1.427 1.233 1.033 -0.887	2	1 mark for each correct row
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
1 (b) (ii)	1.6 1.4 1.2 > 1 > 0.8 = 0.6 0.4 0.2 0	4	
	-0.2 0 50 100 150 200 250 300 Time t / s • For correct labels on each axis • for suitable scales • for correctly plotted points • for heart fit line		
1 (b) (ii)	for best-fit line. Time constant (= <i>RC</i>)	1	
	$= \frac{1}{\text{gradientof graph}}$ Gradient of graph = 5.40 × 10 ⁻³ s ⁻¹	1	
	$\therefore \text{ time constant} = \frac{1}{5.40 \times 10^{-3}} = 185 \text{ s}$ or 190 s $C = \frac{\text{time constant}}{R} = \frac{185}{6.8 \times 10^4}$	1	
	R 6.8×10 ⁴ = 2.72 × 10 ⁻³ F = 2720 μF or 2700 μF	1	
1 (c) (i)	The range of each set of readings is no more than 0.03 V except for the reading at $t = 150$ s which is 0.12 V. This exception is probably due to an anomalous reading. The readings are therefore reliable because	1	A reliable reading is one that has a consistent value each time the reading is made.
	the range of each set of readings is very small compared with the mean value.		

AQA Physics

Question	Answer	Marks	Guidance
1 (c) (ii)	Apart from the exception at $t = 150$ s, the uncertainty of the readings is therefore no more than ± 0.02 V. <i>or:</i> At $t = 0$ the values of ln V_0 are 1.504, 1.506, and 1.504; a mean of 1.505 and an uncertainty	1	
	of 0.001 (half the range). Using the values at 300 s as an example, the values of ln V are -0.117 , -0.105 , and -0.139 ; a mean of -0.120 and an uncertainty of 0.017	1	
	(half the range). In finding the gradient, the change in In V is divided by the time taken. The uncertainty in the change in In V from $t = 0$ to 300 s is about 0.017 + 0.001 = 0.018 and as a percentage	1	
	$\frac{0.018}{1.504+0.120} \times 1000 = 1.3\%$ The equation for <i>C</i> is $C = \frac{t}{R(\ln V_0 - \ln V)}$		4 marks max for part (c) Note If time permits, you could estimate
	$R(\ln V_0 - \ln V)$ The error in <i>t</i> is not known, but taking the largest value of $t = 300$ s, this error is likely to be small (if timing was by hand then the uncertainty in <i>t</i> will be about 0.3 s or 0.1%) given <i>R</i> is accurate to 1%, the value of <i>C</i> is accurate to within 2.3% (= 1.3% + 1%) or about 2%.	1	the random error in V and hence in $\ln V$ for every point and represent them as error bars on the graph. This would allow you to draw lines of maximum and minimum gradient and so determine maximum and minimum values for the time constant to give an uncertainty value for C .
2(a)	Charge on capacitor $Q = CV$ = 2.0 × 10 ⁻⁶ × 150 = 3.0 × 10 ⁻⁴ C (300 µC)	1	The upper plate loses electrons and the lower plate gains an equal number of electrons. The charge on the upper plate is + 300 μ C and that on the lower plate is -300 μ C.
2 (b) (i)	The required graph is of pd <i>V</i> on the vertical axis and charge <i>Q</i> on the horizontal axis.	1	See Question 1 (above). For the energy stored to be calculated from the area under the line on the graph, the axes have to be this way round. The derivation using $\Delta W = V\Delta Q$ requires ΔQ to be on the horizontal axis.
2 (b) (ii)	Energy stored = $\frac{1}{2}CV^2$	1	You could use $\frac{1}{2}$ QV, where Q is the
	$= \frac{1}{2} \times 2.0 \times 10^{-6} \times 150^{2}$	1	300 µC determined in part (a). When finding energy stored, $\frac{1}{2}CV^2$ is usually
	= 2.25 × 10 ⁻² J (22.5 or 23 mJ)		the safest approach because both Q and V change as a capacitor charges, but C is constant as V changes.
2 (c) (i)	Maximum discharge current $= \frac{V}{R} = \frac{150}{220 \times 10^{3}} = 6.82 \times 10^{-4} \text{ A}$ or 6.8 × 10 ⁻⁴ A	1	The maximum current is at the start, as soon as the resistor is connected across the capacitor. The pd across the capacitor is 150 V as it starts to discharge.

AQA Physics

Question	Answer	Marks	Guidance
2 (c) (ii)	Since $Q = Q_0 e^{-t/RC}$, and $Q \propto V$, it follows that $V = V_0 e^{-t/RC}$ and that $I = I_0 e^{-t/RC}$ (current $I \propto V$) Time constant of circuit = RC	1	The quantitative treatment of capacitor discharge is inevitably mathematical. As a capacitor discharges through a resistor, the charge it stores <i>Q</i> , the pd
	$= 220 \times 10^{3} \times 2.0 \times 10^{-6} = 0.44 \text{ s}$		across it <i>V</i> , and the current <i>I</i> in the resistor all decrease exponentially with
	When $I = 0.1 I_0$ substitution gives $0.1I_0 = I_0 e^{-t/0.44}$ or $e^{-t/0.44} = 0.1$ $\therefore e^{-t/0.44} = \frac{1}{0.1} = 10$	1	time. '10% of the maximum value' of the current means 0.1 of the initial current I_0 . When the time is to be found from a power of e, taking logs of both sides of
	taking logs, $\frac{t}{0.44} = \ln 10$		the equation provides a solution.
	giving time $t = 1.01$ s	1	
3 (a) (i)	Charge stored $Q = CV$ = 330 × 10 ⁻⁶ × 9.0 = 2.97 × 10 ⁻³ C	1	Alternatively: energy stored $E = \frac{1}{2}CV^{2} = \frac{1}{2} \times 330 \times 10^{-6} \times 9.0^{2}$
	Energy stored $E = \frac{1}{2} QV$	1	2 = 1.34 × 10 ⁻² J
	$= \frac{1}{2} \times 2.97 \times 10^{-3} \times 9.0 = 1.34 \times 10^{-2} \mathrm{J}$		
3 (a) (ii)	Time constant = RC = 470 × 10 ³ × 330 × 10 ⁻⁶ = 155 s	1	A large vale for the time constant indicates that the discharge will be slow.
3 (a) (iii)	When $t = 60$ s, $Q = Q_0 e^{-t/RC}$ gives $Q = 2.97 \times 10^{-3} e^{-60/155}$ $= 2.02 \times 10^{-3}$ C	1	Part (c) is a good test of your ability to use a calculator to find an exponential quantity.
	pd across capacitor $V = \frac{Q}{C} = \frac{2.02 \times 10^{-3}}{330 \times 10^{-6}}$	1	<i>Alternative approach</i> : using the equation established in Question 2 (c)(ii) above,
	= 6.11 V		$V = V_0 e^{-t/RC}$ gives $V = 9.0e^{-60/155} = 6.11 V$
3 (b) (i)	time constant = RC = $1.0 \times 10^3 \times 330 \times 10^{-6}$ = 0.33 s Graphs to show:	1	
	correct axes and labels on both	1	
	 exponential growth for pd 	1	
	 exponential decay for current value dropped to 0.37 of maximum after RC for current, and increased to 0.63 of maximum after RC for pd. 	1	
3 (b) (ii)	Energy supplied to capacitor = $\frac{1}{2}$ QV	1	
	= $0.5 \times 330 \times 10^{-6} 9.0 = 1.485 \times 10^{-3} J$ Energy supplied by the battery = QV = $330 \times 10^{-6} \times 9.0 = 2.97 \times 10^{-3} J$	1	
	Half the energy from the battery is lost to the resistance in the circuit/dissipated in the resistor.	1	
4 (a)	Use of $Q = CV$ gives charge stored $Q = 4.7 \times 10^{-6} \times 6.0$	1	The initial charge stored is when time $t = 0$; at this point on the graph the pd is
	$charge stored Q = 4.7 \times 10^{-5} \text{ K}$ = 2.82 × 10 ⁻⁵ C or 2.8 × 10 ⁻⁵ C	1	t = 0, at this point on the graph the puls 6.0 V.

AQA Physics

Question	Answer	Marks	Guidance
4 (b)	Use of $E = \frac{1}{2}CV^2$ From graph, when $t = 35 \text{ ms}$, $V = 2.0 \text{ V}$ $\therefore E = \frac{1}{2} \times 4.7 \times 10^{-6} \times 2.0^2$ $= 9.4 \times 10^{-6} \text{ J}$	1	Alternatively: Charge stored $Q = CV = 4.7 \times 10^{-6} \times 2.0$ $= 9.4 \times 10^{-6} C$ $E = \frac{1}{2} QV = \frac{1}{2} \times 9.4 \times 10^{-6} \times 2.0$
4 (c)	The time constant is the time taken for V to decrease from V_0 to (V_0/e) \therefore V must fall to $(6.0/e) = 2.2$ V From the graph, $V = 2.2$ V when $t = 32$ ms \therefore time constant = 32 ms (The graph shows a value between 32 and 33 ms)	1 1 1	= 9.4 × 10 ⁻⁶ J Other solutions are possible, but all of them are less direct, for example using $V = V_0 e^{-t/RC}$ for $t = 35$ ms, when $V = 2.0$ V, gives $2.0 = 6.0 e^{-35/RC}$ $\therefore e^{35/RC} = 3.0$ taking logs, $\frac{35}{RC} = \ln 3.0$ \therefore time constant $RC = \frac{35}{\ln 3.0} = 32$ ms
4 (d)	Time constant = <i>RC</i> ∴ resistance $R = \frac{32 \times 10^{-3}}{C} = \frac{32 \times 10^{-3}}{4.7 \times 10^{-3}}$ = 6.81 × 103 Ω or 6.8 kΩ	1	This question shows how you might find the resistance of a resistor from a data logging experiment, using the discharge of a capacitor of known capacitance.
5 (a)	$= 6.81 \times 103 \Omega \text{ or } 6.8 \mathrm{k}\Omega$ Time constant = <i>RC</i> ∴ capacitance of C = $\frac{2.2 \times 10^{-4}}{R}$ = $\frac{2.2 \times 10^{-4}}{220}$ = 1.0 × 10 ⁻⁶ F (1.0 µF)	1	This circuit needs to have a very small time constant, so that it can be assumed that the capacitor discharges fully whilst the switch is touching contact \mathbf{Y} . The farad is a very large unit, so practical capacitors usually have their values marked in μ F, nF or pF.
5 (b)	Periodic time of oscillation of swich $T = \frac{1}{f} = \frac{1}{400}$ $= 2.5 \times 10^{-3} \text{ s} (2.5 \text{ ms})$	1	The question states that the switch touches each contact (X and Y) 400 times per second. It therefore oscillates at a frequency of 400 Hz.
5 (c) (i)	Switch makes contact with Y for a time $t = \frac{T}{2} = 1.25 \times 10^{-3} \text{ s} (1.25 \text{ ms})$ and the time constant of the circuit is 0.22 ms $V = V_0 e^{-t/RC}$ gives $V = 12e^{-1.25/0.22}$ \therefore pd across capacitor at time $T/2$ $V = 4.09 \times 10^{-2} \text{ V} (40.9 \text{ or } 41 \text{ mV})$	1 1 1	Less direct routes to this answer would be by making use of $Q = Q_0 e^{-t/RC}$ in combination with $Q = CV$, or $I = I_0 e^{-t/RC}$ in combination with $V = IR$. During the discharge, the pd across the capacitor is always equal to the pd across the resistor.
5 (c) (ii)	It is reasonable to assume that the capacitor has completely discharged in time <i>T</i> /2 because either • 40.9 mV is only 0.34% of 12 V, or • 1.25 ms is almost 6 time constants	1	Your answer must be accompanied by reasoning to gain the mark. Either of these reasons would be sufficient. Note that in 6 time constants the pd would fall to $\left(\frac{1}{e}\right)^6 = 2.97 \times 10^{-2}$ V.
6 (a)	A capacitor has a capacitance of 1 farad if it stores 1 coulomb of charge when the pd across it is 1 V.	1	$C = \frac{Q}{V} \therefore 1 \text{ farad} = \frac{1 \text{ coulomb}}{1 \text{ volt}}$

AQA Physics

Question	Answer	Marks	Guidance
6 (b) (i)	Charge stored $Q = CV$ = 2.3 × 10 ⁻¹¹ × 6.0 = 1.38 × 10 ⁻¹⁰ C or	1	This 23 pF capacitor stores only 0.138 nC of charge when the pd across it is 6.0 V.
	1.4 × 10 ⁻¹⁰ C	1	
6 (b) (ii)	Energy stored $E = \frac{1}{2}CV^2$	1	Alternatively: $E = \frac{1}{2} QV = \frac{1}{2} \times 1.38 \times 10^{-10} \times 6.0$
	$= \frac{1}{2} \times 2.3 \times 10^{-11} \times 6.0^{2}$ = 4.14 × 10 ⁻¹⁰ J		$= 4.14 \times 10^{-10} \mathrm{J}$
6 (c)	Initially (at $t = 0$), $V = 6.0$ V	1	These readings are taken from the
0(0)	when $t = 0.4$ ms, $V = 0.80$ V use of $V = V_0 e^{-t/RC}$ gives $0.80 = 6.0e^{-0.0004/RC}$		calibrated screen of the oscilloscope shown in the diagram. <i>Alternatively (and more simply)</i> :
	$\therefore e^{0.0004/RC} = \frac{6.0}{0.80} = 7.5$	1	Since $\frac{1}{e} = 0.368$, the pd will fall to 0.37
	taking logs, $\frac{0.0004}{RC}$ = In 7.5 = 2.01 giving RC = 1.99 × 10 ⁻⁴ s Resistance of oscilloscope		of 6.0 V in a time of 1 time constant (<i>RC</i>). On the graph, $V = 2.2$ V when $t = 0.20$ ms, so $RC = 0.20$ ms. This result gives $R = 8.70 \times 10^{6} \Omega$. Some tolerance has to be allowed in the
	$R = \frac{1.99 \times 10^{-4}}{2.3 \times 10^{-11}} = 8.63 \times 10^{6} \Omega$		answers: 8.1 to 8.7 M Ω should be acceptable.
	or 8.6 \times 10 ⁶ Ω	1	
7 (a) (i)	Energy stored $E = \frac{1}{2}CV^2$ = $\frac{1}{2} \times 270 \times 10^{-6} \times 3.0^2$ = 1.22×10^{-3} ker 1.2×10^{-3} k	1	When a capacitor is charged from a battery of emf <i>V</i> so that it stores charge <i>Q</i> , the battery moves a total charge <i>Q</i> across a pd of <i>V</i> and does work <i>QV</i> . Half of this work is lost as thermal
7 (a) (ii)	= 1.22×10^{-3} J or 1.2×10^{-3} J Work done by battery = QV	1	energy as the charge flows through
	= 2 × (energy stored by capacitor) = 2 × 1.215 × 10^{-3} = 2.43 × 10^{-3} J or 2.4 × 10^{-3} J		resistive components in the circuit.
7 (b) (i)	When $V = 0.3$ V, energy stored	1	Alternatively:
	$E = \frac{1}{2} CV^2 = \frac{1}{2} \times 270 \times 10^{-6} \times 0.32$ = 1.22 × 10 ⁻⁵ J = 0.01 of the initial energy E_0 \therefore energy released by capacitor = 0.99 E_0 , which is almost all of the initial energy.	1	$E = \frac{1}{2} CV^2 \text{ means that } E \propto V^2.$ In this case, V decreases to 0.1 (or 10%) of its initial value, so E decreases to 0.01 (or 1%) of its initial value. Therefore 99% of the initial energy is
7 (1) (")			released.
7 (b) (ii)	Time constant $RC = 1.5 \times 270 \times 10^{-6}$ = 4.05 × 10 ⁻⁴ s use of $V = V_0 e^{-t/RC}$ gives 2.0 = 3.0e ^{-t/RC} $t = RC \ln \frac{3.0}{2.0} = 4.05 \times 10^{-4} \times 0.405$	1	The torch bulb gives out light from $t = 0$ (when $V = 3.0$ V) until the time when V has fallen to 2.0 V. This time is calculated by solving the exponential decay equation, involving the use of
	: duration of light flash $t = 1.64 \times 10^{-4} \text{ s}$ (0.164 or 0.16 ms)	1	logs once more.

AQA Physics

Question	Answer	Marks	Guidance
7 (b) (iii)	Energy of one photon $= \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{500 \times 10^{-9}}$ = 3.98 x 10 ⁻¹⁹ J Energy released when capacitor discharges from 3.0 V to 2.0 V = 1.22 x 10^{-3} - (\frac{1}{2} x 270 x 10^{-6} x 2.0^{2}) = 6.80 x 10 ⁻⁴ J	1	The final part of the question tests whether you can remember how to calculate the energy of a photon. A wavelength of 500 nm corresponds to the average wavelength of visible light. The conclusion of the calculation is that the tiny amount of energy released as the capacitor discharges will produce an incredibly large number of photons.
	Number of photons released = $\frac{6.80 \times 10^{-4}}{3.98 \times 10^{-19}} = 1.71 \times 10^{15}$ or 1.7 x 10 ¹⁵	1	
8 (a)	Time constant of circuit RC = $680 \times 2.2 \times 10^{-6} = 1.50 \times 10^{-3} \text{ s}$ Use of $V = V_0 e^{-t/RC}$ gives $2.2 = 5.0e^{-t/RC}$ from which $t = RC \ln \frac{5.0}{2.2}$ = $1.50 \times 10^{-3} \times 0.821$ \therefore time of contact $t = 1.23 \times 10^{-3} \text{ s} (1.23 \text{ ms})$	1	This question is an example of the practical use of a capacitor-resistor discharge circuit to measure a very short time. The time for which the metal ball is in contact with the metal block would be much too short to be measured directly. Charge flows from the capacitor and through the resistor whilst the circuit is complete: this only happens during the time when the ball and block make
8 (b) (i)	Initial energy stored $E_1 = \frac{1}{2} CV^2$ $= \frac{1}{2} \times 2.2 \times 10^{-6} \times 5.0^2$ $= 2.75 \times 10^{-5} \text{ J}$ Final energy stored $E_2 = \frac{1}{2} \times 2.2 \times 10^{-6} \times 2.2^2$ $= 5.32 \times 10^{-6} \text{ J}$ energy lost by capacitor $= E_1 - E_2$ $= 2.22 \times 10^{-5} \text{ J}$	1	contact. The steps in this calculation could be combined into one expression: $\Delta E = E_1 - E_2$ $= \frac{1}{2} C(V_{12} - V_2^2)$ $= \frac{1}{2} \times 2.2 \times 10^{-6} \times (5.0^2 - 2.2^2)$ $= 2.22 \times 10^{-5} \text{ J}$
8 (b) (ii)	The energy is dissipated in the 680 Ω resistor. This energy becomes internal energy of the resistor, and eventually internal (thermal) energy in the surroundings.	1	Whenever charge flows there is a current. A current in a resistor causes its internal energy (and therefore its temperature) to increase. When its temperature is higher than the surroundings, the resistor passes energy away, raising the internal energy of the air around it.