OCR Chemistry A

Question	Answer	Marks	Guidance
number	Disproportionation is the simultaneous evidation	B1	
1 (a)	Disproportionation is the simultaneous oxidation and reduction of the same element in the same redox reaction	Ы	
1 (b)	CI has been oxidised from 0 in CI_2 to +5 in $NaCIO_3$	B1	
	CI has been reduced from 0 in Cl ₂ to -1 in NaCl	B1	
1 (c) (i)	$2Fe(s) + 3Cl_2(g) \rightarrow 2FeCl_3(s)$		
	1 mark for equation	B1	
	1 mark for state symbols	B1	
1 (c) (ii)	$Cl_2 + 2e^- \rightarrow 2Cl^-$	B1	
1 (c) (iii)	The rate of reaction would be slower because bromine is less reactive that chlorine	B1	
2 (a)	Down a group, electrons are added to a new shell, further from the nucleus	B1	
	There are more inner shells between the outer electrons and the nucleus, increasing the shielding	B1	
	Attraction between nucleus and outer electrons decreases	B1	
	Therefore less energy is required to lose an electron and reactivity of Group 2 increases	B1	
2 (b) (i)	$Ca^+(g) \rightarrow Ca^{2+}(g) + e^-$	B1	
2 (b) (ii)	Group 2 elements react by losing two electrons to form 2+ ions	B1	
3 (a)	$\begin{array}{c} e^{-}(2+) e^{-}(2+) e^{-}(2+) \\ e^{-}(2+) e^{-}(2+) e^{-}(2+) e^{-} \end{array}$	B1 x 2	Regular arrangement must have at least two rows of correctly charged ions and a minimum of two ions per row ALLOW as label: positive ions, cations if correct charge is seen within airale
	 1 mark for showing a regular arrangement of labelled 2+ ions 1 mark for showing delocalised electrons 		within circle ALLOW for labelled Ba ²⁺ ions: circles with Ba ²⁺ inside DO NOT ALLOW incorrect charge for ions eg + , 3+ etc DO NOT ALLOW for label of
	High melting point as the strong attraction between positive ions and delocalised requires a large quantity of energy to be overcome	B1	ions: nuclei OR positive atom OR protons ALLOW e- or 'e' or – as symbol for electron within the lattice for first marking point if not labelled

OCR Chemistry A

Question	Answer	Marks	Guidance
number		marite	
			as 'electrons'.
			ALLOW mobile or 'sea of' for delocalised
			Quality of written communication: 'electron(s)' spelled correctly and used in context for the third marking point ALLOW a lot of energy is needed to break OR overcome the attraction between (positive) ions and (delocalised) electrons IGNORE 'heat' but ALLOW 'heat energy' DO NOT ALLOW references to incorrect particles or incorrect attractions eg 'intermolecular attraction' OR 'nuclear attraction'
			IGNORE 'strong metallic bonds' without seeing correct description of metallic bonding
3 (b) (i)	$Ba(s) + 2H_2O(I) \rightarrow Ba(OH)_2(aq) + H_2(g)$ $Ba(OH)_2$ as product	B1	ALLOW multiples
	Rest of equation and state symbols	B1	
3 (b) (ii)	7 < pH ≤ 14	B1	DO NOT ALLOW if pH 7 is in a quoted range
3 (b) (iii)	OH⁻	B1	DO NOT ALLOW Ba ²⁺ DO NOT ALLOW any reference to electrons
3 (c)	Magnesium carbonate, hydroxide or oxide	B1	ALLOW magnesium carbonate ALLOW correct formulae: Mg(OH) ₂ , MgO, MgCO ₃ IGNORE 'milk of magnesia'
3 (d) (i)	Fizzing and solid dissolves	B1	DO NOT ALLOW 'carbon dioxide
	$SrCO_3 + 2HCI \rightarrow SrCI_2 + H_2O + CO_2$	B1	produced' without 'gas' DO NOT ALLOW 'hydrogen gas produced' OR any other named gas
			ALLOW 'it' for strontium carbonate ALLOW strontium for strontium carbonate if SrCO ₃ seen in equation IGNORE 'reacts' IGNORE references to temperature change IGNORE 'steam produced'

OCR	Chemistry A	
-----	--------------------	--

Question number	Answer	Marks	Guidance
3 (d) (ii)	$\left[\begin{array}{c} (1) \\ (1)$	B1 x 2	IGNORE state symbols For first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons Circles not essential ALLOW One mark if both electron arrangement and charges are correct but only one Cl is drawn ALLOW 2[CI ⁻] 2[CI] ⁻ [CI ⁻] ₂ (brackets not required) DO NOT ALLOW [Cl ₂] ⁻ [Cl ₂] ²⁻ [2CI] ²⁻ [CI] ₂ ⁻
3 (e) (i)	Solution turns orange	B1	ALLOW shades and colours containing (eg dark orange, yellow-orange) ALLOW the following: yellow, yellow-brown, brown, brown-red BUT DO NOT ALLOW red alone IGNORE initial colours DO NOT ALLOW any response that includes 'precipitate' OR solid
3 (e) (ii)	$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$	B1	ALLOW multiples IGNORE state symbols
3 (e) (iii)	Chlorine gains an electron more easily than bromine. An atom of chlorine is smaller than bromine In a chlorine atom, there are fewer shells between the outer electrons and the nucleus than bromine, decreasing shielding In a chlorine atom, the nuclear attraction on an electron to be gained is greater than bromine	B1 B1 B1	Look for ORA from perspective of Br throughout. ALLOW all four marks applied to 'as you go up OR as you down the group' ALLOW CI for chlorine AND Br for bromine ALLOW ORA DO NOT ALLOW the use of 'ide' BUT ALLOW use of 'ide' as an ECF ALLOW chlorine is better at electron capture ALLOW chlorine has greater electron affinity IGNORE chlorine is more electronegative IGNORE chlorine has more oxidising power than bromine

OCR Chemistry A

Question	Answer	Marks	Guidance
number		IVIAI KS	Guidance
Hamber			
			IGNORE explanations given in
			terms of displacement
			ALLOW chlorine has fewer shells
			ALLOW the electron is added to
			the (outer) shell closer to the nucleus
			IGNORE 'easily' for 'greater' or for 'stronger'
			ALLOW 'chlorine has greater
			nuclear attraction (on its
			outermost electrons)'
			OR (the outermost) electrons in
			chlorine are more attracted (to
		D1	the nucleus)'
4 (a)	Down a group, reactivity increases	B1	'Down the group' is not required ORA throughout
	Electrons are added to a new shell, further from	B1	Ū.
	the nucleus		ALLOW alternative phrases for 'reactivity increases'
	There are more inner shells between the outer	B1	reactivity increases
	electrons and the nucleus, increasing the		ALLOW 'there are more energy
	shielding		levels' ALLOW 'electrons are in higher
	Attraction between nucleus and outer electrons	B1	energy levels'
	decreases		ALLOW 'electrons are further
	Therefore less energy is required to lose an	B1	from the nucleus' IGNORE there are more orbitals
	electron and reactivity of Group 2 increases		OR more sub-shells
			ALLOW 'different shell' OR 'new
			shell'
			There must be clear comparison
			ie 'more shielding' OR 'increased
			shielding' ALLOW there is more electron
			repulsion from inner shells
			DO NOT ALLOW responses
			which have no comparative eg 'there is shielding'
			5
			ALLOW 'there is less nuclear pull' OR 'electrons less tightly
			held'
			IGNORE there is less effective
			nuclear charge IGNORE 'nuclear charge' for
			'nuclear attraction'
			If question is answered in terms
			of only Group 7, then ONLY
			marks 2, 3 and 4 can be awarded

OCR Chemistry A

Question number	Answer	Marks	Guidance
			ALLOW easier to oxidise
4 (b) (i)	Aqueous silver nitrate, AgNO ₃ (aq)	B1	ALLOW Ag+ (aq)
4 (b) (ii)	A yellow precipitate forms	B1	ALLOW shades of yellow but not creamy yellow ALLOW ppt or solid for precipitate
4 (b) (iii)	$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$	B1	ALLOW correct multiples
4 (b) (iv)	concentrated aqueous ammonia, NH_3	B1	
5 (a) (i)	A white precipitate	B1	DO NOT ALLOW goes white / cloudy / milky / off-white DO NOT ALLOW creamy white precipitate ALLOW milky white precipitate
5 (a) (ii) 5 (a) (iii) 5 (a) (ii)	Ag ⁺ (aq) + Cl ⁻ (aq) → AgCl(s) 1 mark for species and equation 1 mark for state symbols The precipitate dissolved Chlorine kills bacteria	B1 B1 B1 B1	ALLOW 2 marks AgNO_3(aq) + Cl ⁻ (aq) \rightarrow AgCl(s) + NO_3 ⁻ (aq) (equation mark and state symbol mark)ALLOW 1 mark for: AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq) (state symbol mark)ALLOW 1 mark for the state symbols for THESE balanced equation ONLY: Ag ²⁺ (aq) + 2Cl ⁻ (aq) \rightarrow AgCl(s)Ag(aq) + Cl(aq) \rightarrow AgCl(s)ALLOW forms a solutionALLOW to make water potable
5 (b) (i)	Chlorine kills bacteria	B1	ALLOW to make water potable IGNORE virus DO NOT ALLOW 'purifies water' DO NOT ALLOW 'antiseptic'
5 (b) (ii)	Chlorine is toxic and can form chlorinated hydrocarbons	B1	ALLOW forms carcinogens OR forms toxins DO NOT ALLOW harmful DO NOT ALLOW 'it causes cancer' (chlorine is not a carcinogen) DO NOT ALLOW 'irritates lungs'
5 (c) (i)	$Cl_2 0$; HCI –1; HCIO +1 All three correct:	B1	ALLOW 1– ALLOW 1+
5 (c) (ii)	Chlorine has been both oxidised and reduced	B1	ALLOW 'chlorine' OR 'it'

OCR Chemistry A

Question number	Answer	Marks	Guidance
	CI in CI_2 has been oxidised from 0 to +1 in HCIO AND CI has been reduced from 0 to -1 in HCI	B1	DO NOT ALLOW chlorIDE IF CORRECT OXIDATION STATES IN (i), ALLOW 2 marks for: it is oxidised to form HCIO it is reduced to form HCI
5 (c) (iii)	$Cl_2(g) + 2NaOH(aq) \rightarrow NaCl(aq) + NaClO(aq)$	B1	IGNORE state symbols
5 (d) (i)	$2\text{ClO}_2 \rightarrow \text{Cl}_2 + 2\text{O}_2$	B1	IGNORE state symbols
5 (d) (ii)	H : CI : O = $1.20/1.0$: $42.0/35.5$: $56.8/16.0$ = 1.20 : 1.18 : 3.55 Formula = HCIO ₃	B1 B1	ALLOW 1 mark for empirical formula of HCl ₂ O ₆ (use of atomic numbers) ALLOW 1 mark for empirical formula of H ₃ Cl ₃ O (upside-down expression)
			 ALLOW ECF for use of incorrect <i>A_r</i> values to get empirical formula but only if no over-rounding ALLOW 2 marks for correct answer of HCIO₃
5 (d) (iii)	The oxidation number of CI is +5	B1	ALLOW 'the oxidation state of chlorine OR oxidation number of chlorine is 5' DO NOT ALLOW 'it' instead of 'chlorine'
			DO NOT ALLOW 'the oxidation state OR number of chlor IDE is 5'
6 (a)	Boiling point increases down the group	B1	
	from CI to I, the number of electrons increases,	B1	
	resulting in stronger London forces	B1	
	More energy has to be supplied to break the stronger intermolecular forces	B1	
6 (b) (i)	Ca: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² ;	B1	
	Br: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁵	B1	
6 (b) (ii)	Ca ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ;	B1	
	Br ⁻ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶	B1	
6 (c)	Sr is more reactive than Ca as it is further down Group 2	B1	
	I is less reactive than Br as it is further down the Halogens	B1	

OCR Chemistry A

Question number	Answer	Marks	Guidance
	It is difficult predicting which is the more dominant effect	B1	
7 (a) (i)	BaO	B1	Treat any shown charges as working and ignore.
			Treat B for Ba as a slip.
7 (a) (ii)	Ba ₃ N ₂	B1	Treat any shown charges as working and ignore.
			Treat B for Ba as a slip.
7 (b) (i)	$n(Ba) = \frac{mass Ba}{Molar mass Ba} = \frac{0.11}{137.3} [1] = 8.0 \times 10^{-4} mol$	B1	mark is for the working out which MUST lead to the correct answer of 8 x 10^{-4} up to calculator value
7 (b) (ii)	$n(H_2) = n(Ba) = 8.0 \times 10^{-4} \text{ mol}$ Volume = 8.0 × 10 ⁻⁴ × 24 000 = 19.2 cm ³	B1	ALLOW 19 up to calculator value.
7 (b) (iii)	Concentration = $10 \times 8.0 \times 10^{-4} = 8.0 \times 10^{-3}$ mol dm ⁻³	B1	ALLOW 8.01 x 10 ⁻³ up to calculator value.
7 (b) (iv)	рН ~ 14	B1	ALLOW a correct range of pH.
7 (c)	There is less barium to react because some has already reacted with air	B1	ALLOW less volume because contains some BaO or Ba_3N_2
7 (d)	Down a group, reactivity increases	B1	DO NOT ALLOW more orbitals OR more sub-shells
	Electrons are added to a new shell, further from the nucleus	B1	'More' <i>is essential</i> ALLOW 'more electron repulsion
	There are more inner shells between the outer electrons and the nucleus, increasing the	B1	from inner shells'
	shielding		ALLOW 'nuclear pull' IGNORE any reference to
	Attraction between nucleus and outer electrons decreases	B1	'effective nuclear charge'
	Less energy is needed to lose an electron	B1	ALLOW easier to form positive ion
8 (a)	The solution contains carbonate ions, CO_3^{2-} from the effervescence with dilute nitric acid.	B1	
	$Na_2CO_3 + 2HNO_3 \rightarrow 2NaNO_3 + CO_2 + H_2O$	B1	
	The solution contains bromide ions, Br ⁻ from the cream precipitate with aqueous silver nitrate that dissolves in concentrated aqueous ammonia.	B1	
	$Ag^{+}(aq) + Br^{-}(aq) \rightarrow AgBr(s)$	B1	

OCR Chemistry A

Quest numb		Marks	Guidance
8 (b)	The student would obtain a white precipitate with aqueous barium nitrate	B1	
	Conclusion would be that sulfate ions, SO_4^{2-} are present introduced with the sulfuric acid	B1	
	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$	B1	
9	Add aqueous silver nitrate to each solution, followed by concentrated ammonia	B1	
	The bromide solutions produce a cream precipitate which dissolved in concentrated ammonia	B1	
	The iodide solutions produce a yellow precipitate which does not dissolved concentrated ammonia	B1	
	$Ag^{+}(aq) + Br^{-}(aq) \rightarrow AgBr(s)$ (or equation with I ⁻)	B1	
	Heat solutions with aqueous sodium hydroxide	B1	
	The ammonium solutions produce an alkaline gas/ammonia which turns indicator paper blue	B1	
	$NH_4(aq) + OH^-(aq) \rightarrow NH_3 + H_2O OR$ $NH_4Br(aq) + NaOH(aq) \rightarrow NaBr(aq) + NH_3 + H_2O$	B1	