A-Level Paper 2 Personal Learning Checklist | 6B. T | hermal Energy | | | |-------|--|-------------|-----| | LO | Learning Objectives: | Confide | nce | | LO | Learning Objectives. | | | | 6B.01 | Define internal energy. | | | | 6B.02 | Describe how the internal energy of a system can be increased. | | | | 6B.03 | Define the first law of thermodynamics. | | | | 6B.04 | Explain what happens to a material when it changes state. | | | | 6B.05 | Calculations involving transfer of energy. | | | | 6B.06 | Define specific heat capacity. | | | | 6B.07 | Calculate the energy transferred using Q = mc Δ θ . | | | | 6B.08 | Define specific latent heat. | | | | 6B.09 | Calculate the energy needed to change state using Q = mL. | | | | 6B.10 | State Charles' law. | | | | 6B.11 | State Boyle's law. | | | | 6B.12 | Define the relationship between p, V, T, and the mass of the gas. | | | | 6B.13 | Define absolute zero of temperature. | | | | 6B.14 | Calculations involving the ideal gas equation: pV = nRT for n moles and pV = NkT for N molecules. | | | | 6B.15 | Calculate the work done = p ΔV | | | | 6B.16 | Define Avogadro constant. | | | | 6B.17 | Define the molar gas constant. | | | | 6B.18 | Define Boltzmann constant. | | | | 6B.19 | Calculate molar mass and molecular mass. | | | | 6B.20 | Describe Brownian motion. | | | | 6B.21 | Explain the significance of Brownian motion. | | | | 6B.22 | Explain the relationship between p, V and T in terms of a simple molecular model. | | | | 6B.23 | Explain why the gas laws are empirical in nature whereas the kinetic theory is not. | | | | 6B.24 | Derive pV = ⅓Nm (c _{rms})² including assumptions made. | | | | 6B.25 | Use pV = ⅓Nm (c _{rms})² in calculations. | | | | 6B.26 | Appreciate that the ideal gas internal energy is kinetic energy of the atoms. | | | | 6B.27 | Use the average molecular kinetic energy formula. | | | | 6B.28 | Appreciate how knowledge and understanding of the behaviour of a gas has changed over time. | | | | 6B.29 | Core Practical: Investigation of Boyle's (constant temperature) law and Charles's (cons law for a gas. | tant pressu | re) | | 7. Fields | | | | | |-----------|--|------------|--|--| | LO | Learning Objectives: | Confidence | | | | | | | | | | 7.001 | Describe what a force field is. | | | | | 7.002 | Represent a field. | | | | | 7.003 | State when a force field can arise. | | | | | 7.004 | Describe the gravitational force and what particles it affects. | | | | | 7.005 | State Newton's law of gravitation in words. | | | | | 7.006 | Understand and use the gravitational force equation: F = Gm ₁ m ₂ / r ² . | | | | | 7.007 | Draw a gravitational field around a mass. | | | | | 7.008 Define gravitational field strength. 7.009 Calculate the magnitude of the gravitational field by using either: g = F/m or g = GM / r 7.010 Define gravitational potential. 7.011 State the gravitational potential at infinity. 7.012 Explain why gravitational potential values are always negative. 7.013 Understand and use the equation for potential in a radial field: V = -GM / r 7.014 Sketch a graph of g against r. 7.015 Deduce what the area under a g against r graph represents. 7.016 Sketch a graph of V against r. 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Explain the relationship between V and g by deriving g = - Δ V Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Describe a geostationary orbit. 7.031 Describe the similarities and differences between gravitationary orbits. 7.032 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.035 Q₁Q₂/₁ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.039 Define electric field streng | | | |--|--|--| | 7.010 Define gravitational potential. 7.011 State the gravitational potential at infinity. 7.012 Explain why gravitational potential values are always negative. 7.013 Understand and use the equation for potential in a radial field: V = -GM / r 7.014 Sketch a graph of g against r. 7.015 Deduce what the area under a g against r graph represents. 7.016 Sketch a graph of V against r. 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = − Δ V/ Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around 2 point charges of equal magnitude. 7.039 De | | | | 7.011 State the gravitational potential at infinity. 7.012 Explain why gravitational potential values are always negative. 7.013 Understand and use the equation for potential in a radial field: V = -GM / r 7.014 Sketch a graph of g against r. 7.015 Deduce what the area under a g against r graph represents. 7.016 Sketch a graph of V against r. 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022
Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = − Δ V/ Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.012 Explain why gravitational potential values are always negative. 7.013 Understand and use the equation for potential in a radial field: V = -GM / r 7.014 Sketch a graph of g against r. 7.015 Deduce what the area under a g against r graph represents. 7.016 Sketch a graph of V against r. 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = - Δ V/ Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Describe a geostationary orbit. 7.031 Describe a low orbit. 7.032 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.013 Understand and use the equation for potential in a radial field: V = -GM / r 7.014 Sketch a graph of g against r. 7.015 Deduce what the area under a g against r graph represents. 7.016 Sketch a graph of V against r. 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = -Δ V/Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.014 Sketch a graph of g against r. 7.015 Deduce what the area under a g against r graph represents. 7.016 Sketch a graph of V against r. 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = - Δ V/ Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe the similarities and differences between gravitational fields and electric fields. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) Q₁Q₂/r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.015 Deduce what the area under a g against r graph represents. 7.016 Sketch a graph of V against r. 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = - Δ V/ Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.016 Sketch a graph of V against r. 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = − Δ V / Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of
satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) Q₁(2₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.039 Define electric field strength. | | | | 7.017 Deduce what the area under a V against r graph represents. 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = − Δ V / Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe the similarities and differences between gravitational fields and electric fields. 7.034 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.039 Define electric field strength. | | | | 7.018 State what is meant by the term equipotential. 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = − Δ V/ Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge of equal magnitude. 7.039 Define electric field strength. | | | | 7.019 Explain how much work is done when moving along an equipotential surface. 7.020 Explain how much work is done in moving a mass between two potentials. 7.021 Calculate the work done in moving a mass between two potentials using: ΔW = mΔV 7.022 Define gravitational potential energy and how it related to the work done. 7.023 Explain the relationship between V and g by deriving g = - Δ V/ Δ r. 7.024 Describe how orbital speed is related to radius of a circular orbit. 7.025 Describe how orbital period is related to radius of a circular orbit. 7.026 Derive Keplar's law: T² is directly proportional to r³. 7.027 Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.039 Define electric field strength. | | | | 7.020Explain how much work is done in moving a mass between two potentials.7.021Calculate the work done in moving a mass between two potentials using: $\Delta W = m\Delta V$ 7.022Define gravitational potential energy and how it related to the work done.7.023Explain the relationship between V and g by deriving $g = -\Delta V/\Delta r$.7.024Describe how orbital speed is related to radius of a circular orbit.7.025Describe how orbital period is related to radius of a circular orbit.7.026Derive Keplar's law: T^2 is directly proportional to r^3 .Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite.7.028Define escape velocity.7.030Define escape velocity.7.031Describe a geostationary orbit.7.032Describe a low orbit.7.033Describe some uses of satellites in low obits and geostationary orbits.7.034Describe the similarities and differences between gravitational fields and electric fields.7.035Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ 7.036State that air can be treated as a vacuum when calculating force between charges.7.037Draw an electric field around a point charge (positive or negative).7.038Define electric field strength. | | | | 7.021Calculate the work done in moving a mass between two potentials using: $\Delta W = m\Delta V$ 7.022Define gravitational potential energy and how it related to the work done.7.023Explain the relationship between V and g by deriving $g = -\Delta V/\Delta r$.7.024Describe how orbital speed is related to radius of a circular orbit.7.025Describe how orbital period is related to radius of a circular orbit.7.026Derive Keplar's law: T^2 is directly proportional to r^3 .7.027Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite.7.028Define escape velocity.7.030Define synchronous orbits.7.031Describe a geostationary orbit.7.032Describe a low orbit.7.033Describe some uses of satellites in low obits and geostationary orbits.7.034Describe the similarities and differences between gravitational fields and electric fields.Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ 7.036State that air can be treated as a vacuum when calculating force between charges.7.037Draw an electric field around a point charge (positive or negative).7.038Derive electric field strength. | | | | 7.022Define gravitational potential energy and how it related to the work done.7.023Explain the relationship between V and g by deriving $g = -\Delta V/\Delta r$.7.024Describe how orbital speed is related to radius of a circular orbit.7.025Describe how orbital period is related to radius of a circular orbit.7.026Derive Keplar's law: T^2 is directly proportional to r^3 .7.027Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite.7.028Define escape velocity.7.030Define synchronous orbits.7.031Describe a geostationary orbit.7.032Describe a low orbit.7.033Describe some uses of satellites in low obits and geostationary orbits.7.034Describe the similarities and differences between gravitational fields and electric fields.Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ 7.036State that air can be treated as a vacuum when calculating force between charges.7.037Draw an electric field around a point charge (positive or negative).7.038Define electric field strength. | | | | 7.023Explain the relationship between V and g by deriving $g = -\Delta V/\Delta r$.7.024Describe how orbital speed is related to radius of a circular orbit.7.025Describe how orbital period is related to radius of a circular orbit.7.026Derive Keplar's law: T^2 is directly proportional to r^3 .Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite.7.028Define escape velocity.7.029Calculate escape velocity.7.030Define synchronous orbits.7.031Describe a geostationary orbit.7.032Describe a low orbit.7.033Describe some uses of satellites in low obits and geostationary orbits.7.034Describe the similarities and differences between gravitational fields and electric fields.7.035Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ 7.036State that air can be treated as a vacuum when calculating force between charges.7.037Draw an electric field around a point charge (positive or negative).7.038Draw an electric field around 2 point charges of equal magnitude.7.039Define electric field strength. | | | | 7.024Describe how orbital speed is related to radius of a circular orbit.7.025Describe how orbital
period is related to radius of a circular orbit.7.026Derive Keplar's law: T^2 is directly proportional to r^3 .Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite.7.028Define escape velocity.7.029Calculate escape velocity.7.030Define synchronous orbits.7.031Describe a geostationary orbit.7.032Describe a low orbit.7.033Describe some uses of satellites in low obits and geostationary orbits.7.034Describe the similarities and differences between gravitational fields and electric fields.7.035Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ 7.036State that air can be treated as a vacuum when calculating force between charges.7.037Draw an electric field around a point charges of equal magnitude.7.039Define electric field strength. | | | | 7.025Describe how orbital period is related to radius of a circular orbit.7.026Derive Keplar's law: T^2 is directly proportional to r^3 .Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite.7.027Define escape velocity.7.028Calculate escape velocity.7.030Define synchronous orbits.7.031Describe a geostationary orbit.7.032Describe a low orbit.7.033Describe some uses of satellites in low obits and geostationary orbits.7.034Describe the similarities and differences between gravitational fields and electric fields.Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ Q_1Q_2/r^2 7.036State that air can be treated as a vacuum when calculating force between charges.7.037Draw an electric field around a point charge (positive or negative).7.038Draw an electric field strength. | | | | 7.026Derive Keplar's law: T^2 is directly proportional to r^3 .7.027Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite.7.028Define escape velocity.7.029Calculate escape velocity.7.030Define synchronous orbits.7.031Describe a geostationary orbit.7.032Describe a low orbit.7.033Describe some uses of satellites in low obits and geostationary orbits.7.034Describe the similarities and differences between gravitational fields and electric fields.7.035Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ 7.036State that air can be treated as a vacuum when calculating force between charges.7.037Draw an electric field around a point charge (positive or negative).7.038Draw an electric field strength. | | | | Describe the total energy, gravitational potential energy and kinetic energy of an orbiting satellite. 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.035 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field strength. | | | | 7.027 satellite. 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field strength. | | | | 7.028 Define escape velocity. 7.029 Calculate escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. 7.035 Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.029 Calculate escape velocity. 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.035 Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.030 Define synchronous orbits. 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.035 Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.031 Describe a geostationary orbit. 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.035 Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.032 Describe a low orbit. 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.035 Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.033 Describe some uses of satellites in low obits and geostationary orbits. 7.034 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: F = 1/(4π ε₀) 7.035 Q₁Q₂/ r² 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.034 Describe the similarities and differences between gravitational fields and electric fields. Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ 7.035 Q_1Q_2/r^2 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | Calculate the force between 2 point charges in a vacuum using the formula: $F = 1/(4\pi \epsilon_0)$ 7.035 Q_1Q_2/r^2 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.036 State that air can be treated as a vacuum when calculating force between charges. 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.037 Draw an electric field around a point charge (positive or negative). 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric
field strength. | | | | 7.038 Draw an electric field around 2 point charges of equal magnitude. 7.039 Define electric field strength. | | | | 7.039 Define electric field strength. | | | | | | | | 7.040 Calculate disease field strong to the Trigger as | | | | 7.041 Draw a uniform electric field. | | | | 7.041 Calculate the electric field in a uniform using E = V/d. | | | | 7.042 Compare the size of gravitational and electrostatic forces between subatomic particles. | | | | 7.044 Derive a formula for work done in moving a charge between 2 plates: Fd = QΔV | | | | Draw the trajectory of a moving charged particle entering a uniform electric field; both | | | | 7.045 parallel and initially at right angles. | | | | 7.046 Describe the motion of a moving charged particle in a uniform electric field. | | | | 7.047 Define electric potential. | | | | 7.048 State the electric potential value at infinity. | | | | 7.049 Define electric potential difference. | | | | 7.050 Deduce whether the electric potential difference is positive or negative. | | | | 7.051 Calculate the work done in moving a charge between two potentials using $\Delta W = Q \Delta V$. | | | | 7.052 Calculate the electric potential of a radial field using $V = Q/4\pi \epsilon_0 r$ | | | | 7.053 Sketch a graph of E against r. | | | | 7.055 | Deduce what the area under an E against r graph represents. | | | |-------|---|---------|-------| | | Sketch a graph of V against r. | | | | 7.000 | Deduce what the gradient of a V against r graph represents. | | | | | Derive E = Δ V/ Δ r | | | | 7.007 | Define capacitance. | | | | | Calculate capacitance using the equation, C = Q/V. | | | | | Describe how the size of a capacitor relates to the cross sectional area of the plates, the | | | | 7.060 | space between the plates and permittivity of the material between the plates. | | | | | Describe what a dielectric is. | | | | | Describe how a dielectric is able to help a capacitor hold charge by explanation of a simple polar molecule. | | | | 7.063 | Calculate relative permittivity and the dielectric constant. | | | | 7.064 | Explain how a capacitor holds charge. | | | | 7.065 | Describe how a capacitor is charged up. | | | | 7.066 | Draw graphs relating to the charging of a capacitor (Q-t, V-t and I-t). | | | | 7.067 | Explain the shape of the charging graphs. | | | | 7.068 | Interpret the gradient and area under each of these graphs. | | | | 7.069 | Describe how a capacitor can be discharged. | | | | 7.070 | Draw graphs relating to the discharging of a capacitor (Q-t, V-t and I-t) | | | | | Explain the shape of the discharging graphs. | | | | | Interpret the gradient and area under each of these graphs. | | | | | Define time constant, T. | | | | | Calculate time constant from the circuit (RC). | | | | | Determine the time constant from a charging graph. | | | | | Determine the time constant from a discharging graph. | | | | | Use and rearrange the equation for capacitor discharge, $Q = Q_0 e^{-t/RC}$. This includes being | | | | 7.077 | able to use the natural logarithmic, ln. Use and rearrange the equation for capacitor charge, $Q = Q_0$ (1- $e^{-t/RC}$). This includes being | | | | 7.078 | able to use the natural logarithmic, In. | | | | | Derive the time to halve as being T _{1/2} = 0.69RC. | | | | | Core Practical: Investigation of the charge and discharge of capacitors. Analysis technically include log-linear plotting leading to a determination of the time constant RC. | iques s | hould | | 7.081 | Define magnetic flux density. | | | | | Define the tesla. | | | | | Deduce the direction of magnetic field around a current carrying wire using the right hand grip rule. | | | | | Deduce the direction of force acting on a current carrying wire in a magnetic field, where the field is perpendicular to the current. | | | | | Explain why a force is present when a current carrying wire is in a magnetic field. | | | | | Calculate the force acting on a current carrying wire in a magnetic field using F = BII | | | | | Explain how a motor rotates, including the need for a commutator. | | | | | Calculate the force on a charged particle moving in a magnetic field, F = BQv. | | | | | Deduce the direction of the force on positive and negative charged particles in a magnetic | | | | 7.089 | field. | | | | | Explain the motion of particles in a magnetic field. | | | | | Calculate the radius of a particle in a magnetic field using F = BQv and circular motion equations. | | | | | Explain what happens to the motion of a particle if mass of the particle is changed. | | | | 7.093 | Explain what happens to the motion of a particle if the magnetic field is changed. | | | | 7.094 | Explain what happens to the motion of a particle if the charge was changed. | | | | | Describe how a cyclotron works. | | | | 7.096 | Core Practical: Investigate how the force on a wire varies with flux density, current, and using a top pan balance. | d leng | th of w | vire | |-------|---|--------|---------|------| | 7.097 | Define magnetic flux. | | | | | 7.098 | Define magnetic flux linkage. | | | | | 7.099 | Calculate the flux and flux linkage passing through a rectangular coil rotated in a magnetic field using: NΦ = BANcosθ | | | | | 7.100 | State and apply Faraday's law. | | | | | 7.101 | State and apply Lenz's law. | | | | | 7.102 | Explain what happens when a straight conductor is moved in a magnetic field. | | | | | 7.103 | Calculate the emf is induced in a coil rotating uniformly in a magnetic field using: ϵ = BAN ω sin ωt | | | | | 7.104 | Describe how an AC generator is different to a dynamo. | | | | | 7.105 | State what is meant by root mean square voltage/current. | | | | | 7.106 | State and draw what is meant by peak voltage/current. | | | | | 7.107 | State and draw what is meant by peak to peak voltage/current. | | | | | 7.108 | Calculate root mean square current/voltage. | | | | | 7.109 | Appreciate that main electricity is alternating current and 230V is the r.m.s voltage. | | | | | 7.110 | Use an oscilloscope to measure ac and dc voltage and time intervals to obtain frequency of ac waveforms. | | | | | 7.111 | Explain how a transformer works. | | | | | 7.112 | Understand and use the transformer equation: $N_s/N_p = V_s/V_p$ | | | | | 7.113 | Calculate the efficiency of a transformer: IsVs/ I _P V _P | | | | | 7.114 | Explain eddy currents. | | | | | 7.115 | Describe and explain the causes of inefficiencies in a transformer. | | | | | 7.116 | Explain why transmission lines require high voltages. | | | | | 7.117 | Calculate the power loss in transmission lines. | | | | | 7.118 | Core Practical: Investigate, using a search coil and oscilloscope, the effect on magnetivarying the angle between a search coil and magnetic field direction. | c flux | linkag | e of | | 8. Nuclear | | | | | | |------------|---|----|------------|--|--| | LO | Learning Objectives: | Со | Confidence | | | | 8.01 | Describe the Rutherford Scattering experiment. | | | | | | 8.02 | Explain the results of the Rutherford Scattering experiment. | | | | | | 8.03 | Appreciate how knowledge and understanding of the structure of the nucleus has changed over time. | | | | | | 8.04 | Describe the properties α , β and γ radiation. | | | | | | 8.05 | Explain how experiments can identify what type of radiation is being emitted. | | | | | | 8.06 | Explain the application of α , β and γ radiation. | | | | | | 8.07 | State the inverse-square law for gamma radiation. | | | | | | 8.08 | Describe an experiment to verify the inverse-square law. | | | | | | 8.09 | State what background radiation is. | | | | | | 8.10 | State examples of the origins of background radiation. | | | | | | 8.11 | Calculate experimental elimination of background radiation | | | | | | 8.12 | Describe the safe handling of radioactive sources. | | | | | | 8.13 | Appreciate the balance between risk and benefits in the uses of radiation in medicine. | | | | | | 8.14 | State the random nature of radioactive decay. | | | | | | 8.15 | Calculate the decay probability of a given nucleus using Δ N / Δ t = - λ N | | | | | | 8.16 | Calculate and understand using the decay equation: N = N0e ^{-λt} | | | | | | 8.17 | State what is meant by activity. | | | | | | 8.18 | Calculate the activity using $A = \lambda N$. | | | | |--------------|--|----------|---|--| | 8.19 | Describe the different models with a constant decay probability. | | | | | 8.20 | Calculate using molar mass or Avogadro constant. | | | | | 8.21 | State what is meant by half-life. | | | | | 8.22 | Calculate half-life using the equation $T_{1/2} = \ln 2 / \lambda$ | | | | | 8.23 | Determine half-life from a graphical decay curve. | | | | | 8.24 | Determine half-life from a graphical log graph. | | | | | 0.24 | Describe how half-life is important in applications such as radioactive waste and radioactive | | | | | 8.25 | dating. | | | | | 8.26 | Draw a graph of N against Z for stable nuclei. | | | | | 8.27 | Deduce possible decay modes of unstable nuclei including α , β +, β - and electron capture. | | | | | 8.28 | Represent changes radioactive decay by simple decay equations. | | | | | 8.29 | Understand nuclear energy level diagrams. | | | | | 8.30 | Describe what is meant by a nuclear excited state. | | | | | 8.31 | State what γ ray emission is. | | | | | 8.32 |
Describe applications of γ ray emission, including the use of technetium-99m as a γ source in medical diagnosis. | | | | | 8.33 | Estimate the radius from closest approach of alpha particles. | | | | | 8.34 | Determine the radius from electron diffraction. | | | | | 8.35 | State typical values for nuclear radius. | | | | | 8.36 | Calculate the radius from nucleon number using $R = R_0 A^{1/3}$. | | | | | 8.37 | State that this equation if derived from experimental data. | | | | | 8.38 | Interpret the equation as evidence for constant density of nuclear material. | | | | | 8.39 | Calculations involving nuclear density. | | | | | 8.40 | Sketch a graph of intensity against angle for electron diffraction by a nucleus. | | | | | 8.41 | Understand and use $E = mc^2$. | | | | | 8.42 | Calculate mass difference. | | | | | 8.43 | Calculate binding energy. | | | | | 8.44 | State what the atomic mass unit is. | | | | | 8.45 | Convert between mass difference and binding energy. | | | | | 8.46 | Describe the process of fission. | | | | | 8.47 | Describe the process of fusion. | | | | | 8.48 | Calculate the energy released in fission and fusion reactions from the nuclear mass. | | | | | 8.49 | Understand and use the graph of average binding energy per nucleon against nucleon number. | | | | | 8.50 | Identify on the graph, regions where nuclei will release energy when undergoing fission/fusion. | | | | | 0 [1 | Appreciate that knowledge of nuclear energy allows society to use science to inform | | | | | 8.51
8.52 | decision making. Describe how fission is induced. | | | | | 8.52 | State what is meant by a chain reaction. | | | | | 8.54 | State what is meant by a criain reaction. State what is meant by critical mass. | | | | | 0.34 | Explain the functions of the following: | <u> </u> | I | | | 8.55 | moderator | | | | | 8.56 | control rods | | | | | | coolant | | | | | 8.57 | Understand a simple mechanical model of moderation by elastic collisions. | | | | | 8.58 | State and describe the factors affecting the choice of materials for the moderator, control | | | | | 8.59 | rods and coolant. | | - | | | 8.60 | State examples of materials used. | | | | | | Describe the safety aspects of the following: | | | | |------|--|---|---|---| | 8.61 | fuel used. | | | | | 8.62 | remote handling of fuel. | | | | | 8.63 | shielding. | | | | | 8.64 | emergency shut-down. | | | | | 8.65 | production. | | | | | 8.66 | radioactive waste materials. | | | | | 8.67 | Appreciate the balance between risk and benefit in the development of nuclear power. | | | | | 8.68 | Core Practical: Investigation of the inverse-square law for gamma radiation. | • | • | • |