AAQ Applied Science Unit 2 Chemistry Personal Learning Checklist

A1: Atomic and Electronic Structure

Objective		Confidence			
		(R/A/G)		
		1	2	3	
A1	.1 Features of the periodic table and their relationship with atomic structure				
•	use of the concepts (symbols, atomic number, mass number) to determine				
	numbers of subatomic particles (protons, neutrons and electrons) in atoms, isotopes and ions				
•	use of relative atomic mass to determine relative abundance of isotopes				
	(and use of relative abundance of isotopes to determine relative atomic mass)				
•	use of relative atomic mass to determine relative formula masses				
•	use of the concepts (group, period, blocks) to determine the number and				
	arrangement of electrons in atoms and ions				
A1	.2 Electronic structure				
•	energy levels (shells), subshells and electronic orbitals				
•	rules to determine the electronic structure of atoms				
•	represent electronic configuration for atoms and ions of elements with				
	atomic numbers 1-36 in terms of:				
	a) s, p and d notation				
	b) electron-in-boxes diagrams.				
A1	.3 Ionisation energy		Ī		
•	definition and equations for first and successive ionisation energies				
•	evidence from successive ionisation energies for the electronic structure of				
	an atom				
•	factors affecting ionisation energy trends down a group and across a period				
	a) nuclear charge				
	b) number of shells				
	c) shielding				
	d) subshells				

B1: Bonding and Structure

Ok	jective	Co	nfidenc	e
Stu	dents will need to be able to describe and represent different types of	(R/A/G)	
	nding and structure listed in B1.1, B1.2 and B1.3 as dot-and-cross diagrams	1	2	3
	d/or lattice arrangements for atoms, ions and molecules.			
B1.	1 Metallic bonding and giant metallic structures			
•	be able to describe and represent the structure of metallic substances as			
	positive metal cations with a sea of delocalised electrons			
•	be able to describe and represent the bonding in metallic structures as			
	strong electrostatic attractions between positive metal cations with			
	negative electrons			
B1	4 be able to explain how the structure and bonding links to the properties of.			
	a) electrical conductivity			
	b) high melting and boiling points			
B1	2 Ionic bonding and giant ionic structures			
•	be able to describe and represent the structure of ionic substances as a			
	giant ionic lattice with positive and negative ions			
•	be able to describe and represent the bonding in ionic structures as strong			
	electrostatic attractions between positive metal cations with negative ions			
B1	4 be able to explain how the structure and bonding links to the properties of.			
	a) electrical conductivity in different states			
	b) high melting and boiling points			
B1	3 Covalent bonding and molecules			
•	electrostatic attraction between two nuclei and the shared pair of electrons			
	between them			
•	single, double, triple and dative covalent (coordinate) bonds			
•	sigma and pi molecular orbitals			
•	relationship between bond lengths and bond strength			
•	simple molecular structures and giant covalent structures			
R1	4 be able to explain how the structure and bonding links to the properties of.			
DI	a) electrical conductivity			
	b) high melting and boiling points in giant covalent structures			
	c) low melting and boiling points in simple covalent structures			
D 1	5 Molecular shape – the use of electron pair repulsion theory to determine			
	pes of molecules (up to 6 electron pairs around the central atom):			
3110	• linear			
	• non-linear			
	trigonal planar			
	pyramidal			
	tetrahedral			
	trigonal bipyramidal			
	a) octahedral and their associated bond angles			
B1	6 Electronegativity and polarity			
•	definition of electronegativity, trends across a period and down a group			

boiling point, densities of ice and liquid water, surface tension of water)		
B1.8 Effect of hydrogen bonding on the properties of water (melting and		
Hydrogen bonding (and effects on physical properties)		
permanent dipole – permanent dipole forces		
London dispersion forces/temporary dipole – induced dipole forces		
B1.7 Intermolecular forces:		
or non-polar		
use of electronegativity and molecular shape to identify molecules as polar		
use of electronegativity to determine bond polarity		

C1: Periodicity

Objective	Co	nfiden	ce	
Students will need to be able to use the principles covered in section A (atomic		(R/A/G)		
and electronic structure) and section B (structure and bonding) to describe and	1	2	3	
explain the properties and reactions covered in this section.	_	_		
C1.1 Changes in physical properties for the elements across Period 3 (Na to				
Ar):				
atomic radius and ionic radius (positively and negatively charged ions)				
melting point				
electrical conductivity				
C1.2 Oxidation number concept, oxidation and reduction	ı	1	ı	
determination of the oxidation number of an element in compounds and				
ions using the oxidation number concept				
application of the oxidation number concept to determine the formula of				
common oxides, hydroxides/acids and chlorides of Period 3 elements				
oxidation and reduction in terms of loss and gain of electrons				
construct half equations and redox equations				
C1.3 Trends and observations for the reactions of the Period 3 elements with;				
 oxygen (formation of the products Na₂O, MgO, Al₂O₃, P₄O₁₀ and SO₂ 				
only)				
 water (formation of the products NaOH, Mg(OH)₂ and Al(OH)₃ only) 				
 chlorine (formation of the products NaCl, MgCl₂, Al₂Cl₆, SiCl₄, and PCl₅ 				
only)				
C1.4 Differences in physical properties (melting point and electrical				
conductivity only) for the Period 3 oxides and chlorides listed in C1.3				
C1.5 Acid-base behaviour of Period 3 oxides and hydroxides listed in C1.3.1,				
and of the compounds SiO2, H3PO4, H2SO4, HCl, HClO and HClO4				
C1.6 The action of water with Period 3 chlorides listed in C1.3.3 and the pH of				
the solutions produced				
C1.7 Write balanced equations for reactions in C1.3, C1.5 and C1.6				
C1.8 Predict the physical and chemical properties of elements in other periods				
based upon knowledge of the Period 3 elements				
C1.9 Uses of Period 3 elements and compounds, based upon their physical and				
chemical properties				

D1: Physical Chemistry

Objective	Co	nfidenc	e
	(R/A/G)	
	1	2	3
D1.1 Concept of the mole and use in calculations involving:			
 mass and molar mass (relative atomic mass or relative formula mass) 			
 empirical formula and stochiometric ratios in equations 			
 gas volume and molar volume (24dm³ at room temperature and 			
pressure)			
percentage yield, actual yield and theoretical yield			
D1.2 Chemical kinetics	I		
 factors affecting rate of reaction to include concentration, pressure, 			
temperature, surface area and catalysis			
 collision theory and activation energy 			
 interpretation of concentration vs time graphs 			
 Maxwell-Boltzmann distribution curves – effect of changes in 			
concentration, temperature and catalysis			
 determination of rate equations, to include finding orders of reaction 			
and the value of a rate constant (and its units), when given appropriate			
data			
D1.3 Chemical energetics			
 enthalpy change – definition, endothermic and exothermic processes 			
energy level diagrams and reaction profile diagrams			
 standard enthalpy changes –standard conditions and definitions of 			
standard enthalpy change of formation, of combustion and of reaction			
 Hess's Law and energy cycles 			
calculations involving energy cycles and standard enthalpy changes			
D1.4 Chemical equilibrium			
dynamic equilibrium – definition and characteristics			
Le Chatelier's principle and predicting the effect on equilibrium of			
changes in concentration, pressure and temperature, and the presence			
of a catalyst			
Le Chatelier's principle and predicting the effect on equilibrium of			
changes in concentration, pressure and temperature, and the presence			
of a catalyst			
 calculations involving equilibrium constants and concentrations or 			
partial pressures			
 interpretation of yield vs pressure or temperature graphs 			
D1.5 Application of chemical kinetics, energetics and equilibrium to the			
chemical industry			
D1.6 Application of green chemistry in the chemical industry			
 atom economy and uses of waste products 			

renewable and recycled resources		
 energy efficiency and catalysis 		
 hazards of reactants and products 		
 recycling of unused reactants 		
 end-of-life for products (recycling and degradation). 		

E1: Organic Chemistry

Objective		Confidence (R/A/G)		
	1	2	3	
E1.1 Knowledge and understanding of key terms used in organic chemistry:	_			
saturated hydrocarbon and unsaturated hydrocarbon				
straight-chain, branched chain and cyclic organic compounds				
 homologous series and functional group 				
 general formulae for alkanes, alkenes, halogenoalkanes and alcohols 				
E1.2 Structure representations of organic compounds, using;				
 addition reactions of alkenes with H₂, halogens, hydrogen halides and 				
steam				
substitution reactions of alkanes with halogens using UV radiation				
substitution reactions of halogenolkanes with aqueous sodium				
hydroxide				
substitution reactions of alcohols with PCl₅ and with HBr				
elimination reactions of halogenoalkanes using ethanolic sodium				
hydroxide				
 oxidation of primary alcohols to carboxylic acids using acidified K₂Cr₂O₇ 				
condensation reactions of alcohols with carboxylic acids to form esters				
E1.8 Reactions of commercial importance				
 combustion (complete and incomplete) of hydrocarbons and alcohols 				
cracking of large chain alkanes (into smaller alkanes and alkenes)				
addition polymerisation				
condensation polymerisation (dicarboxylic acids with diols or diamines)				
E1.9 Benefits and problems arising from combustion, halogenoalkanes (CFCs),				
polymers (plastics) and alcohol (ethanol)				
E1.10 Solutions to environmental problems caused by organic compounds and				
their usage in E1.8 and E1.9.				