AAQ Applied Science Unit 3 Physics Personal Learning Checklist

A: Understanding waves and optical fibres

Objective	Co	onfiden	ce
		(R/A/G)	
A1: Working with waves	1	2	3
A1.1 Wave types and features			
Understand the common features of waves			
periodic time			
• wave speed			
wavelength			
• frequency			
amplitude			
• oscillation			
 graphical and diagrammatic representation of wave features. 			
A1.2 Transverse and Longitudinal waves			
• Identify the similarities and differences between transverse and longitudinal			
waves			
A1.3 Concepts of; displacement, coherence, path difference, phase difference a	nd super	position	of
waves as applied to diffraction gratings.			
 emission of different light frequencies due to electron energy level changes 			
within the atom.			
 using diffraction gratings to form line emission spectra 			
• using the lines of emission spectra to identify elements in gases.			
A1.4 Wave equation			
• Using the wave equation: $v=f\lambda$			
A1.5 Concepts and applications of stationary waves and resonance in strings an	d pipes	•	
 concepts and applications of stationary waves and resonance to musical 			
instruments.			
• using the equation: speed of a transverse wave on a string, $v = V(T/\mu)$ where			
T is the tension in the string and $\boldsymbol{\mu}$ is the mass per unit length of the string			

Objective	Confidence (R/A/G)		_
A2 Principles of optical fibres	1	2	3
A2.1 Concept of refraction and total internal reflection (TIR)			
• use equations for refractive index $n = \frac{c}{v} = \sin i / \sin r$			
know that total internal reflection only occurs when the angle of incidence			
in the more optically dense medium is greater than the critical angle			
• calculate the critical angle at a glass—air interface given the refractive index of glass			
using: $\sin c = l/n$			
know how cladding of optical fibres effects the critical angle in the fibre			

A2.2 Applications of optical fibres in engineering, communication, and		
medicine.		
A2.3 Differences between analogue and digital signals		

Objective	Со	nfiden	ce
A3: Uses of electromagnetic waves in communication	(R/A/G)	
	1	2	3
A3.1 All electromagnetic waves travel at the speed of light in a vacuum.			
A3.2 Use the inverse square law in relation to the intensity of a wave: $I = k/r^2$			
A3.3 Regions of electromagnetic spectrum overlap and have different frequencial	es and w	aveleng	ths
 using electromagnetic waves and frequencies in communication applications, to include: satellite communication and GPS positioning mobile phones Bluetooth© infrared Wi-Fi 			

B: Forces in transportation and Newtons Laws of Motion

Objective		nfidenc	e
B1 Measurement and representation of motion	(R/A/G) 2	3
B1.1 Standard SI units			
• standard SI units and symbols for initial velocity (u), final velocity (v),			
distance and displacement (s), time (t), and acceleration (a).			
• units of speed: kilometres per second (kms-1), kilometres per hour (kmh-1).			
B1.2 Calculating speed and average speed			
speed = distance ÷ time			
 average speed = total distance ÷ total time. 			
B1.3 Using vector and scalar quantities to describe motion:			
using velocity as a vector quantity that has magnitude and direction			
using distance as a scalar quantity that has magnitude only			
using displacement/time graphs to find velocity			
using velocity time graphs to describe the motion of an object			
using velocity/time graphs to find the distance travelled from the area			
beneath the graph			
using velocity/time graphs to find acceleration as rate of change of velocity			
from the gradient of the graph, $a = (v-u)/t$			
find the acceleration of a trolley moving down a gradient			
use equations for the calculation of motion:			
s = (u+v)t/2			
v = u + at			
$s = ut + \frac{1}{2}at^2$			

$v^2 = u^2 + 2as$			
B1.4 Understand the applications of accelerometers, to include: 'fitbits',			
mobile phones and blood pressure monitors			
B2 Laws of motion	<u> </u>		
B2.1 Newton's First Law of Motion – the application of a resultant force to			
make an object move or stop			
B2.2 Definitions of inertia, mass and weight.			
inertia as a resistance to change in motion			
gravitational field strength (g) and weight			
• calculations for weight, equation $W = mg$			
B2.3 Calculation of the coefficient of friction (μ) using the equation:			
force $F = \mu N$ where N is the normal reaction force, the weight of object on a hor	rizontal su	ırface.	
measuring coefficient of static friction, where F is the force applied just as			
the object is about to move			
measuring coefficient of dynamic (kinetic) friction, where F is the force			
applied to keep the object moving at a constant velocity.			
B2.4 Calculating the momentum (p) of objects using the equation $p = mv$			
B2.5 Using Newton's Second Law of Motion, force is proportional to rate of			
change of momentum, to include:			
F = (mv-mu)/t and $F = ma$			
force is proportional to acceleration for a constant mass			
calculations using Newtons Second Law			
implications for transportation when travelling at high speed with low mass			
and low speed with high mass			
use of impact force controls:			
• air bags			
• seat belts			
helmets for motor bike users			
• passenger 'cells'			
• crumple zones.			
B2.6 Newton's third law of motion action and reaction are equal and opposite			
B2.7 Know that if F is the resultant force on an object, the object accelerates,			
if the forces are balanced F is zero and the object is moving at a constant			
velocity or stationary			
effect of air resistance, drag and terminal velocity in different applications, to			
include:			
• vehicles on roads			
• falling parachutes			
objects falling in liquids			

C: Electrical circuits and the transfer of energy

Objective		nfiden	
C1 Use of electrical components		(R/A/G)	1
	1	2	3
C1.1 Identifying circuit symbols			
C1.2 Defining terminology – current, potential difference, energy and power			
identifying the electrical units of measurement:			
current in amps (A)			
 potential difference in volts (V) 			
• power in watts (W)			
energy in joules (J)			
 resistance in ohms (Ω) 			
C1.3 Connecting circuits with cells, batteries, power supplies, lamps, resistors, v	ariable r	esistors,	
switches, ammeters and voltmeters.	1	ı	ı
 using electrical meters in series and parallel to measure current and 			
potential difference			
 using an ohmmeter to measure the resistance of a component 			
C1.4 Using electrical components in circuits:			
• filament lamps			
• diodes			
• thermistors			
• light dependent resistors (LDR)			
• photodiodes and light emitting diodes (LED)			

Objective	Co	Confidence	
C2 Equations		(R/A/G)
	1	2	3
C2.1 Using equations for electrical calculations:	·		
• power = potential difference × current (<i>P</i> = <i>IV</i>)			
• voltage = current × resistance (V = IR)			
• power = work done/ time ($P = E/t$)			
• energy = potential difference × current × time ($E = VIt$)			

Objective	Confidence		ce
C3 Electrical energy usage		(R/A/G)	
	1 2		3
C3.1 Relating to different domestic appliances to calculate energy usage.			
C3.2 Relating fuse size to current.			
C3.3 Calculating transferred energy using the equation: Energy transferred =			
power in kilowatts × time in hours (kWh = kW × h)			

Objective	Cc	nfiden	ce
C4 Energy transfer	((R/A/G)	
	1	2	3
C4.1 Defining units – joules (J), kilojoules (kJ), mega joules (MJ)			
C4.2 Converting temperatures between Celsius (°C) and Kelvin (K)			
C4.3 The transfer of energy to give a change of temperature and change of			
state			
C4.4 Temperature change			
 measuring specific heat capacity of liquids and solids 			
 using equation: Thermal energy = mass × specific heat capacity × 			
temperature change $\Delta Q = m c \Delta T$			
 unit of measurement of specific heat capacity J kg⁻¹K⁻¹ 			

Objective C5 Change of state		Confidence (R/A/G)	
	1	1 2	
C5.1 Measuring specific latent heat fusion and vapourisation for a liquid			
C5.2 Using the equation:			
Thermal energy = mass x specific latent heat. $\Delta Q = m L$			