Section Eight — Knowledge Organiser

These pages summarise all the key principles of designing and making that you need to know — but don't forget to do your own research into two designers and two companies as well. Now, without further ado...

User Needs

Products should meet the needs of the target market.

Ergonomic design — size and proportions of product are comfortable and appropriate for the user. Designers use

anthropometric data -

to make products the

right size and shape.

Measurements of human body parts, taken from a wide range of body types.

Products should be accessible for people with disabilities or physical limitations, and for different age groups.

Manufacturers aim to design products

The target market = is the aroun of = is the around of = i suitable for 90% of the target market.

is the group of people that you want to sell to. want to sell to.

Basic Design Process

Client writes design brief, which tells designer:

- what product is needed
- why product is needed
- how product is used
- who target market is

Designer researches product:

Market Research **Product Analysis**

Conclusions can cause design brief to change.

Design brief agreed and design specification made.

Shows design criteria: e.g. size, function, cost, materials, safety, sustainability...

Market Research

Identify a target group, then discover what sort of product they want.

Questionnaires & Interviews

Closed questions: limited answers, easier to analyse.

Open questions: detailed answers, harder to analyse.

Interviews usually get more detailed answers than questionnaires.

Focus Groups

Group interviews: guided discussions, in-depth feedback.

ICT

Analyse and present results using spreadsheets/graphs, or collect more data on the internet.

Product Analysis

Research/evaluate existing products to give you ideas.

Function	What does it do? How does it work?
Form	How does it look? What are the aesthetics?
Sensory Analysis	How does it feel, look, smell or taste?
Ergonomics	How does the design fit the users' needs?
Competition and Cost	Does it offer value for money?
Sustainability	How harmful to the environment is it?
Materials	Which materials does it use, and why?
Manufacture	How is it made? What processes are involved?
Impacts	What are the social and environmental impacts?

Environmental: toxic, recyclable, sustainable, biodegradable materials? Polluting/wasteful processes? Ethical, renewable, non-renewable sources? Social: fair pay for workers? Safe working conditions? Fairtrade: makes sure producers get a fair price. Benefits producers, workers, environment.

Design Strategies

Systems Approach — breaking down design process into step-by-step stages.

User-Centred Design —

user needs prioritised at every stage.

Iterative Design — circular process of testing, evaluating and improving. Repeated until all design problems identified and fixed.

Every design strategy involves collaboration with e.g.

• the client • the target market

You'll use iterative design in your non-exam assessment.

- experts

Design fixation — getting stuck on an idea. Avoid it by collaboration, thinking of new solutions and sticking to design strategy.

Developing a Design

- Develop your initial, freehand sketches into more detailed versions.
- Make a model of your design.

Models: practice versions of design experimental stage for problem-solving. Use easy materials, CAD/CAM for 3D printed models and data for mathematical models.

Toile: model of clothing design uses cheap fabric, similar to the planned fabric, easily marked up.

Breadboard: model of circuit design (board with holes for components) — no soldering needed, so circuit can be easily changed.

Manufacturing Specification

A fully detailed plan explaining to a manufacturer exactly how to make a product.

It should show, either in words or diagrams:

- construction details
- materials
- sizes/dimensions
- tolerances
- equipment
- finishing details
- quality controls
- costings

Work Order chart — flowchart showing order of tasks. Includes processes and decisions. Can cover tools, quality checks, safety, etc.

Gantt chart — shows timing and order of tasks, and if tasks can overlap.

Developing Prototypes

Prototypes — full-size, fully-working products/systems, made in the same way as the final version will be made.

They allow you to evaluate...

- The manufacturing process any problems with materials or processes? Are costings accurate? Costs include:
 - materials/components
- equipment

labour

- energy
- packaging
- waste disposal

2 The design itself — are all criteria in design specification and design brief met?

Identify any improvements or alterations = Keep a record = needed, make a new prototype, test it, improve it, and so on...

of any changes you make.

Drawing Techniques

Freehand sketches — drawn without equipment. Show ideas only (can be annotated with details).

Perspective drawings — show 3D perspective, with 1 or 2 vanishing points.

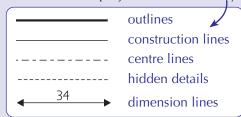
Isometric drawings — best at showing dimensions.

System diagrams — flowcharts with input, process, output boxes. Schematic diagrams show layout of a system.

These two are used for electronic and mechanical systems.

Scale drawings —

smaller, proportional versions of large objects.


Exploded diagrams — assembly drawings that show how parts fit together in 3D.

Orthographic projections —

3D object shown as 2D scale drawings, viewed from different angles:

- plan view (from above)
- front view
- end view (from the side)

The lines used in projections follow a key.

Using Materials Efficiently

Mark out materials with appropriate tools so products are made accurately.

Best practice: measure things twice, use thin marks in hidden places, cut on the waste side of lines, remove marks when you're done with them.

When cutting shapes, tessellation or nesting will reduce waste — CAD can help with layout.

Working Safely

- Wear protective clothing/equipment e.g. goggles, face mask, protective gloves.
- Be careful with tools/machinery e.g. secure work, use guards, switch things off.
- Handle materials sensibly e.g. store materials safely, dispose of waste properly.

Risk assessment — done for product/manufacture. Identify hazards, come up with precautions.

Safety tests on product — done by designer.

Stick to these principles to design and make a product successfully...

The designing and making process is full of so many small stages that it's quite easy to get them confused. Make sure you know what happens at each stage, so that you carry everything out in the right order.