Combined Science - Physics - Paper 2 - Foundation Tier Personal Learning Checklist (PLC)

		ates	5
	Learning objectives:		
5.	Forces		
	Forces in balance (Kerboodle Chapter 8)		
5.1	Write down what displacement is.		
5.2	Write down what a vector quantity is.		
5.3	Write down what a scalar quantity is.		
5.4	Describe how to represent a vector quantity.		
5.5	Write down what forces can do.		
5.6	Write down the unit of force.		
5.7	Write down what a contact force is.		
5.8	Describe the forces being exerted when two objects interact.		
5.9	Describe what a resultant force is.		
5.10	Describe what happens if the resultant force on an object is zero.		
5.11	Describe what happens if the resultant force on an object is greater than zero.		
5.12	Calculate the resultant force when two forces acting along the same line act an object.		
5.13	State what a free-body force diagram is. (HT only)		
5.14	State what the centre of mass of an object is.		
5.15	State where the centre of mass of a metre ruler is.		
5.16	Find the centre of mass of an object suspended from a fixed point.		
5.17	Find the centre of mass of a symmetrical object.		
	Motion (Kerboodle Chapter 9)		
5.18	Calculate speed for an object moving at constant speed.		
5.19	Use a distance-time graph to determine whether an object is stationary or moving at constant speed.		
5.20	State what the gradient of the line on a distance-time graph can tell you.		
5.21	Use the equation for constant speed to calculate distance moved or time taken.		
5.22	State the difference between speed and velocity.		
5.23	Calculate the acceleration of an object.		
5.24	State the difference between acceleration and deceleration.		
5.25	Measure velocity change.		
5.26	State what the horizontal line on a velocity-time graph tells you.		
5.27	Use a velocity time graph to work out whether an object is accelerating or decelerating.		

5.28	Calculate the acceleration from a velocity-time graph.		
	Force and motion (Kerboodle Chapter 10)		
5.29	Describe how the acceleration of an object depends on the size of the resultant force acting upon it.		
5.30	Describe the effect that the mass of an object has on its acceleration.		
5.31	Describe how to calculate the resultant force on an object from its acceleration and its mass.		
5.32	Core practical: investigating F = ma		
5.33	Describe the difference between mass and weight.		
5.34	Describe and explain the motion of a falling object acted on only by gravity.		
5.35	State what terminal velocity means.		
5.36	State what can be said about the resultant force acting on an object that is falling at terminal velocity.		
5.37	Describe the forces that oppose the driving force of a vehicle.		
5.38	State what the stopping distance of a vehicle depends on.		
5.39	State what can cause the stopping distance of a vehicle to increase.		
5.40	State what elastic means.		
5.41	Core practical: describe how to measure the extension of an object when it is stretched.		
5.42	Describe how the extension of a spring changes with the force applied to it.		
5.43	State what the limit of proportionality of a spring means.		

6.	Waves	
	Wave properties (Kerboodle Chapter 12)	
6.1	Describe what waves can be used for.	
6.2	Describe what transverse waves are.	
6.3	State what longitudinal waves are.	
6.4	State which types of wave are transverse and which are longitudinal.	
6.5	Define the amplitude, frequency, and wavelength of a wave mean.	
6.6	Describe how the period of a wave is related to its frequency.	
6.7	State the relationship between the speed, wavelength, and frequency of a wave.	
6.8	Use the wave speed equation in calculations.	
6.9	Core practical: investigating waves on a string and in a ripple tank.	
6.10	Determine whether plane waves that cross a boundary between two different materials are refracted. (HT only)	
6.11	State what sound waves are.	

	Electromagnetic Waves (Kerboodle Chapter 13)		
6.12	State the parts of the electromagnetic spectrum.		
6.13	Explain the range of wavelengths within the electromagnetic spectrum that the human eye can detect.		
6.14	Describe how energy is transferred by electromagnetic waves.		
6.15	Core practical: investigating how different surfaces emit infrared radiation.		
6.16	Calculate the frequency or wavelength of electromagnetic waves.		

6.17	Describe the nature of white light.		
6.18	List some uses of infrared radiation, microwaves, and radio waves.		
6.19	State what mobile phone radiation is.		
6.20	Explain why these types of electromagnetic radiation are hazardous.		
6.21	Explain why radio waves of different frequencies are used for different purposes.		
6.22	State which waves are used for satellite TV.		
6.23	Describe how to decide whether or not mobile phones are safe to use.		
6.24	Describe how fibre optics are used in communications.		
6.25	Describe what a carrier wave is. (HT only)		
6.26	Describe the differences between ultraviolet and visible light.		
6.27	List some uses of X-rays and gamma rays.		
6.28	State ionising radiation.		
6.29	Explain why ultraviolet waves, X-rays, and gamma rays are dangerous.		
6.30	Describe what x –rays are used for in hospitals.		
6.31	State which parts absorb x-rays when they pass through the body.		

7.	Magnetism and Electromagnetism	
	Electromagnetism (Kerboodle Chapter 15)	
7.1	State the force rule for two magnetic poles near each other.	
7.2	Describe the pattern of magnetic field lines around a bar magnet.	
7.3	Describe what induced magnetism is.	
7.4	Explain why steel, not iron, is used to make permanent magnets.	
7.5	Describe the pattern of the magnetic field around a straight wire carrying a current and in and around a solenoid.	
7.6	Describe how the strength and direction of the field varies with position and with the current.	
7.7	Describe what a uniform magnetic field is.	
7.8	Describe what an electromagnet is.	
7.9	Describe how to change the size and reverse the direction of the force on a current-carrying wire in a magnetic field.	
7.10	Explain what is meant by magnetic flux density.	
7.11	Calculate the force on a current-carrying wire.	
7.12	State what transformers are used for.	
7.13	Describe what a step-up transformer does and what a step-down transformer does.	

	Equations I need to know	
I.		
	speed (v) $(m/s) = distance (s) (metres, m)$	
	time taken(t) (seconds, s)	
II.		
	acceleration (a) $(m/s^2) = \frac{\text{change in velocity } (\Delta v)}{(m/s)}$	
	time taken (t) (s)	
III.		
	resultant force (F) = mass (m) x acceleration (a)	
	(N) (kg) (m/s ²)	
IV.		
	weight $(W) = mass(m) \times gravitational field strength(g)$	
	(N) (kg) (N/kg)	
V.		
	force applied (F) = spring constant (k) x extension (e)	
	(N) (N/m) (m)	
VI.		
	Pressure (p) (Pa) = force (F) (N)	
	area (A) (m²)	
VII.		
	wave speed (v) $(m/s) = frequency (f) (Hz) x wavelength (\lambda) (m)$	