
Practice Paper 1B

Section A

Section 1x						
1	C	6	В	11	D_{ij}	
2	В	7	C	12	В	
3	D	8	C	13	В	
4	A	9	A	14	В	
5	D	10	D	15	D	

Section B

- 16 a) Sulfur trioxide is symmetrical, but sulfur dioxide is not ✓ Dipoles cancel out in sulfur trioxide ✓
 - b) i) $\Delta H_{r^{\Theta}} = 2 \times \Delta H_{r^{\Theta}}(SO_3) 2 \times \Delta H_{r^{\Theta}}(SO_2) \checkmark \text{ (Award for symbols or numbers)}$ $\Delta H_{r^{\Theta}} = (2 \times -395.7) (2 \times -296.8)$ $\Delta H_{r^{\Theta}} = -197.8 \text{ (kJ mol}^{-1}) \checkmark \text{ (Sign must be correct)}$
 - ii) Product line below reactant line and ΔH_{r^0} line correctly drawn \checkmark Ea correctly labelled (ALLOW double-headed arrow) \checkmark

Progress of Reaction

c) i)
$$K_p = \frac{p(SO_3)^2}{p(O_2) \times p(SO_2)^2} \checkmark$$

Moles (SO₃) at equilibrium = $\frac{Mass}{M_T} = \frac{3.443}{80.1} = 0.0430 \checkmark$

	O ₂	SO ₂	SO ₃
Moles (initial)	0.160	0.160	0.00
Moles (eqm)	0.117	0.0740	0.0430

✓ (Correct eqm moles)
Total moles = 0.234

	O2	SO ₂	SO ₃	
Partial Pressure	0.117 × 0.5 0.234	0.074 × 0.5 0.234	0.043×0.5 0.234	
Partial Pressure	0.2500	0.1581	0.0919	

✓ (ALLOW ECF from incorrect moles)

$$K_{p} = \frac{0.0919^{2}}{0.25 \times 0.1581^{2}}$$

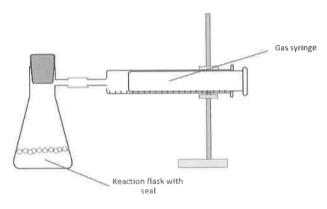
 $K_p = 1.35 \checkmark ALLOW ECF from incorrect partial pressures$

$$K_p = \frac{kPa^2}{kPa * kPa^2} = kPa^{-1} = \checkmark \text{ (ALLOW Pa-1 if Pascals used in calculation)}$$

ii) (Pressure is doubled, so) the partial pressures of each of the reactants and products are initially doubled ✓

Value of $\frac{p(SO_3)^2}{p(O_2) \times p(SO_2)^2}$ decreases OR denominator increases by more than the numerator (ALLOW argument made using actual figures from (i) \checkmark

Equilibrium shifts to the right to restore the value of K_P OR equilibrium shifts to the right to increase the numerator and decrease the denominator \checkmark


- d) i) V₂O₅ ✓
 - ii) No change \checkmark Catalysts speed up both the forward and reverse reactions equally \checkmark (IGNORE catalysts do not affect K_P this is credited by the first mark)
 - iii) At lower temperatures the reaction is slower ✓
 At higher temperatures there is a lower yield ✓
 Higher temperatures are more expensive OR require more fuel OR result in more pollution from emissions ✓
- 17 a) Side product is HCl \checkmark 2Cl₂ + 2 H₂O \Rightarrow 3HCl + HClO₂ \checkmark
 - b) Reacts to form chlorinated hydrocarbons (which have been linked to ill health effects) OR Chlorine is toxic ✓
 - c) To calibrate the pH meter ✓
 So readings using the pH meter can be adjusted to the correct values (using a calibration curve) ✓
 - d) i) Even scale that uses half the graph paper AND axes labelled AND units for volume included ✓ Points plotted correctly ✓ Smooth curve with clear vertical section ✓
 - ii) Bromocresol purple AND range entirely within the vertical section of the graph \checkmark
 - e) i) $K_a = 10^{-pK_a} = 10^{-1.94} = 1.148 \times 10^{-2} \checkmark$ $[H^+] = \sqrt{K_a \times [HA]} = \sqrt{1.148 \times 10^{-2} \times 0.01} = 1.072 \times 10^{-2} \text{ mol dm}^{-3} \checkmark$ $pH = -\log_{10}[H^+] = -\log_{10}0.01072 = 1.97 \checkmark$
 - ii) $[OH^-] = \frac{K_W}{[H^+]} = \frac{1.00 \times 10^{-14}}{1.072 \times 10^{-2}} = 9.33 \times 10^{-13} \text{ (mol dm}^{-3)} \checkmark$
 - iii) [HA] at equilibrium cannot be approximated to be the same as the initial [HA] if greater than 5 % dissociation ✓
 This gives a [H+] that is too small ✓

(Greater concentration means) there are more particles in a given volume ✓
 Therefore, there are more <u>frequent</u> (successful) collisions ✓

b)

LEVEL OF RESPONSE QUESTION			
T. al.O. (E. Carrenles)	The practical procedure is described in a comprehensive and logical fashion.		
Level 3: (5–6 marks)	The experimental set-up is completely viable.		
	The practical procedure is described, but omits some details or is not		
Level 2: (3–4 marks)	described in a completely logical order.		
	The experimental set-up is mostly correct, with minor errors.		
T 14 (4.0 1.)	Some suggestions for an procedure are given, but not in a logical order.		
Level 1: (1–2 marks)	Some appropriate equipment is suggested.		
0 marks	No creditworthy response.		

Indicative Content

Experimental Set-up

- Experimental diagram with a set-up that allows gas collection (e.g. gas syringe or collection over water). Must be closed to prevent loss of gas to atmosphere.
- Labelled piece of equipment in diagram to measure gas production

Experimental Description

- Measure out given quantities of Fe (III) solution and H₂O₂ using a measuring cylinder / other appropriate measuring apparatus
- Add to the reaction flask and replace bung/seal
- Measure the time taken to produce a certain quantity of gas/oxygen
- Repeat for different concentrations of Fe (III)
- Identification of at least one control variable (e.g. volume of H₂O₂; concentration of H₂O₂; temperature)
- c) When concentration of H_2O_2 is divided by 3, rate is divided by 3. Rate is first order with respect to H_2O_2 .

Rate =
$$k [H_2O_2]$$
 so $k = \frac{Rate}{[H_2O_2]} \checkmark$

From reaction 1 (ALLOW use of reaction 2): $k = \frac{3.65 \times 10^{-5}}{5.00 \times 10^{-3}} = 7.3(0) \times 10^{-3} \checkmark$

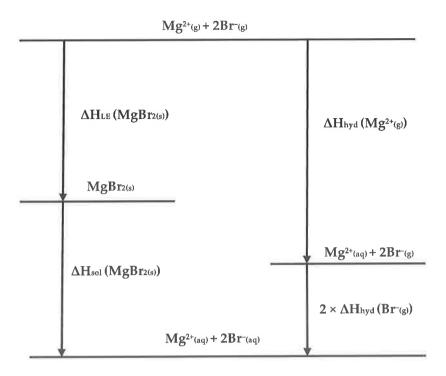
Units: $k = \frac{\text{mol dm}^{-3} \text{ s}^{-1}}{\text{mol dm}^{-3}} = \text{ s}^{-1}$

- d) $k = \frac{\ln 2}{t_{1/2}}$ so $t_{1/2} = \frac{\ln 2}{k}$ $t_{1/2} = \frac{\ln 2}{7.3 \times 10^{-3}} = 95.0$ (accept 94.95) OR 6931(.47) from given value \checkmark
- e) Overall order is 2 ✓
 Rate is first order with respect to Fe (III) and H₂O₂ so sum of orders of individual reaction is 2. ✓

- **19** a) 4 ✓
 - b) A central metal ion surrounded by / coordinately bonded to ligands ✓
 - c) Correct groups bound to Pt ✓
 Cis square planar complex ✓
 Trans complex would have the same ligands on opposite side of the complex ✓

- d) $[PtI_4]^{2-}(aq) + 2 NH_3(aq) \rightleftharpoons Pt(NH_3)_2I_2(s) + 2 I^{-}(aq)$ Correct, balanced species \checkmark State symbols \checkmark
- e) Binds to the DNA ✓ Stops replication ✓
- f) Adverse side effects (ALLOW valid alternatives) ✓

20 a)


LEVEL OF RESPONSE QUESTION			
Level 3: (5–6 marks)	Answer is structured in an entirely ordered manner. All elements are		
Level 5. (5 6 marks)	included in discussion, with characteristics linked to explanations.		
	Answer is mostly well structured. The majority of the elements are		
Level 2: (3–4 marks)	included in the discussion, with correct characterisation of melting points		
	in most cases, and some explanation.		
Level 1: (1–2 marks)	Answer contains little order. Isolated information about different		
	elements is given, with one or two explanations.		
0 marks	No creditworthy response.		

Indicative Content

- Sodium to aluminium giant metallic
- (Relatively) high melting points from sodium to aluminium
- Due to strong electrostatic attraction between delocalised electrons and positive ions
- Melting point increases from sodium to aluminium
- Due to increasing charge on ions, giving greater electrostatic attraction
- Silicon exists as a giant covalent lattice
- Very high melting point
- Due to network of strong covalent bonds
- Phosphorous, sulfur and chlorine are simple molecular / covalent lattices
- Low melting point
- Due to weak dispersion forces between molecules
- Argon exists as atoms
- Very low melting point
- Due to weak dispersion forces between atoms
- b) Simple covalent / molecular ✓

c) i) (The enthalpy change when) one mole of gaseous ions is dissolved in water \checkmark

ii)

Arrows with correct direction ✓

Correct ΔH labels on arrows (IGNORE state symbols; IGNORE size of arrows; ALLOW hydration steps the other way round) \checkmark

Correct species on each line (DO NOT ALLOW incorrect state symbols) ✓

iii)
$$\Delta H_{hyd} (Mg^{2+}(g)) = -2432 + -192 - (2 \times -348) \checkmark \Delta H_{hyd} (Mg^{2+}(g)) = -1928 (kJ mol^{-1})$$

- 21 a) +6 ✓ (must specify positive)
 - b) Zinc reacting with the acid/H⁺ ✓

c)

	Titration 1	Titration 2	Titration 3	Titration 4
Start reading (cm³)	0.00	20.90	0.00	21.30
End reading (cm³)	20.90	41.05	20.30	41.40
Titre (cm³)	20.90	20.15	20.30	20.10
Mean titre to 1 d.p. (cm³)		20	0.1	

Correct titres calculated ✓

Correct mean titre to 1 d.p. ✓

d)
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightleftharpoons 7H_2O + 2Cr^{3+} \checkmark$$

$$Zn^{2+} + 2e^{-} \rightleftharpoons Zn \checkmark$$

$$Cr_2O_7^2 + 3Zn + 14H^+ \rightleftharpoons 2Cr^{3+} + 3Zn^{2+} + 7H_2O \checkmark$$

Moles
$$Cr_2O_7^{2-} = 0.0201 \times 0.005 = 1.005 \times 10^{-4} \checkmark$$
 (Accept ECF from incorrect titre)

Moles
$$Zn^{2+}$$
 = 3 × 1.005 × 10⁻⁴ = 3.015 × 10⁻⁴ ✓ (Moles $Cr_2O_7^{2-}$ × 3)

Mass Zn =
$$3.015 \times 10^{-4} \times 65.4$$
 = 1.972×10^{-2} ✓ (Moles Zn × 65.4)

% by mass =
$$\frac{\text{Mass of zinc}}{\text{Mass of tablet}} \times 100 = \frac{1.972 \times 10^{-2}}{2.5 \times 10^{-2}} \times 100 = 78.9 \% \checkmark (Accept ECF)$$

- e) (Moles of $Cr_2O_7^2$ -would be too high) so percentage by mass of zinc would be higher than the actual value \checkmark
- f) It needs to be repeated by someone else / by a different method ✓