Practice Paper 1C

Section A

1	С	6	В	11	C
2	В	7	В	12	D
3	В	8	A	13	D
4	D	9	D	14	C
5	В	10	A	15	Α

Section B

16 a) i)
$$Ba_{(g)} + \frac{1}{2}O_{2(g)} \checkmark$$

ii) Ba⁺(g) +
$$\frac{1}{2}O_{2(g)} + e^{-} \checkmark$$

- b) 1st electron affinity (of oxygen) ✓
- c) Energy is required to overcome the repulsion between the electron and a negative ion ✓

d)
$$\Delta H = -770 - -141 - 248 - 965 - 503 - 180 + -548 \checkmark$$

 $\Delta H = -3073 \text{ kJ mol}^{-1} \checkmark$

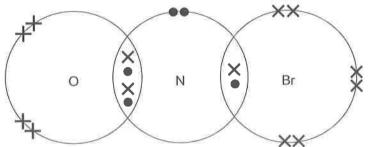
e) Larger as it requires more energy to remove an electron from strontium than from barium ✓ Because strontium has fewer shells / is smaller AND has less shielding ✓

17 a)

LEVEL OF RESPONSE QUESTION				
Land 2 (E. Canadas)	Comprehensive practical account given in a logical fashion.			
Level 3: (5–6 marks)	Almost all key equipment included.			
I 10 (2 4 1-2)	Account that covers most of the practical steps, in a mostly logical fashion.			
Level 2: (3–4 marks)	Some of the key equipment is included.			
T 14 (4.0 1.)	A few of the practical steps included, but with little sense of order,			
Level 1: (1–2 marks)	One or two key pieces of equipment included.			
0 marks No creditworthy response.				

Indicative Content (IGNORE references to specific quantities)

- Measure equal volumes of acid from each insect using suitable apparatus (pipette or micro-syringe)
- Add to a volumetric flask, and add distilled water to the volumetric flask until it almost reaches
 the line
- Make up to the fixed amount using a teat pipette to bring the bottom of the meniscus to the measuring line
- Invert the volumetric flask repeatedly to mix the solution
- Use a pipette to extract a known quantity of solution and add to a conical flask / other suitable piece of named glassware
- Add an indicator


b) i)
$$[H^+] = 10^{-pH} = 10^{-2.54} = 2.88 \times 10^{-3} \checkmark$$

ii)
$$K_a = 10^{-pKa} = 10^{-3.75} = 1.778 \times 10^{-3} \checkmark$$
 [HCOOH] = $\frac{[H^+]^2}{K_a} = \frac{[2.88 \times 10^{-3}]^2}{[1.778 \times 10^{-3}]} \checkmark$ ALLOW ECF from incorrect values above [HCOOH] = 0.0468 mol dm⁻³

iii) Negligible dissociation means that the concentration of $H^{\scriptscriptstyle +}$ ions formed from dissociation can be ignored \checkmark

So that
$$[H^+]$$
 = $[HCOO^-]$ AND $[H^+]$ × $[HCOO^-]$ = $[H^+]^2$ \checkmark

- c) i) (A solution) that acts to minimise a change in pH ✓ (DO NOT ALLOW 'STOPS') When small quantities of acid or base are added ✓
 - ii) Adding an <u>excess</u> of the weak acid to NaOH ✓
- d) $[H^+] = \frac{[HCOOH] \times K_a}{[HCOO^-]} = \frac{0.125 \times 1.778 \times 10^{-3}}{0.100} \checkmark$ ALLOW use of concentrations as given in question $[H^+] = 2.22(2) \times 10^{-4} \checkmark$ $pH = -log_{10}[H^+] = -log_{10}(2.222 \times 10^{-4}) = 3.7 \text{ to } 1 \text{ d.p.} \checkmark$
- a) Correct dot-and-cross diagram ✓ (IGNORE inner electrons)
 Shape is non-linear / bent ✓
 Bond angle is <120° and >115° ✓

- b) i) Record volume of gas produced against time ✓
 Plot graphs of volume against time for different temperatures ✓
 Draw tangents to the curves at t = 0 and compare the gradients of the tangents ✓
 - ii) It is not a closed system ✓

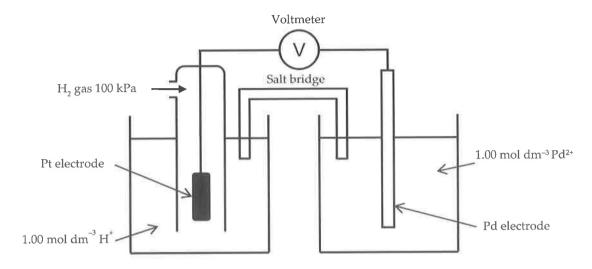
c)
$$K_c = \frac{[NO]^2 \times [Br_2]}{[NOBr]^2} \checkmark$$

	NOBr	NO	Br ₂
Moles (initial)	Y	0.00	0.00
Moles (eqm)	Y – 0.089	0.089	0.0445
Concentration (eqm)	$\frac{Y - 0.089}{2}$	0.089	$\frac{0.0445}{2}$
Concentration (eqm)	$\frac{Y - 0.089}{2}$	0.0445	0.02225

$$K_c = \frac{[0.0445]^2 \times [0.02225]}{[\frac{Y-0.089}{12}]^2} = 0.0143$$

$$\left[\frac{Y-0.089}{2}\right]^2 = \frac{\left[0.0445\right]^2 \times \left[0.02225\right]}{0.0143}$$

$$Y = \left(2 \times \sqrt{\frac{[0.0445]^2 \times [0.02225]}{0.0143}}\right) + 0.089 \checkmark (Mark is for correct rearrangement in terms of Y)$$


$$Y = 0.200 \text{ (mol)} \checkmark$$

Total moles =
$$(0.200 - 0.089) + 0.089 + 0.0445 = 0.2445$$

Mole fraction of NOBr =
$$(0.200 - 0.089) / 0.2445 = 0.454$$
 ✓

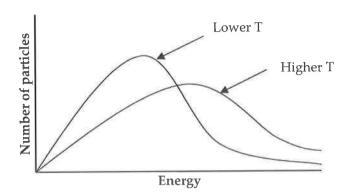
- d) i) Increase in the number of moles of gases means increase in disorder ✓
 ΔS should be positive ✓ (Must be linked to correct justification)
 - ii) Reaction must be endothermic in the forward direction so ΔH is positive \checkmark Because position of equilibrium shifts in the endothermic direction to oppose the increase in temperature (which is the forward reaction) \checkmark $\Delta G = \Delta H T\Delta S \text{ AND } \Delta G \text{ must be negative for a reaction to proceed } \checkmark$ Since ΔH is positive for the forward reaction, ΔG can only be favourable if ΔS is also positive \checkmark

19 a)

Temperature = 298 K

Inflow of hydrogen AND platinum electrode \checkmark 1.00 mol dm⁻³ solutions AND temperature = 298 K AND 100 kPa / 1 bar pressure \checkmark Pd electrode AND Pd²⁺ ions in solution \checkmark Salt bridge AND voltmeter \checkmark

b) 2H+ + 2e-


H₂ moves to the left during the reaction AND because E₀ is less positive

pH decreases AND because [H+] increases (must be a reason for this mark to be awarded)

A different value is given because conditions are no longer standard / concentrations have changed

✓

- 20 a) Chlorine goes from +1 to -1 AND +5 ✓ Chlorine has been both oxidised and reduced ✓
 - b) More <u>frequent</u> collisions ✓
 More of the collisions are above the <u>activation energy</u> ✓
 - c) i)

Axes correctly labelled ✓

Correct shape of curve ✓

Labelled higher T curve with a peak lower and to the right of first peak ✓

ii) Area under the curve ✓

d)

LEVEL OF RESPONSE QUESTION				
	Reasoning for deduction of both the rate equation and the mechanism is clear.			
Level 3: (5–6 marks)	Order is correctly calculated.			
	A viable mechanism is deduced.			
	Some reasoning given for both the deduction of the rate equation and the			
T 10 (0 4 1)	mechanism OR detailed reasoning given for only one of them.			
Level 2: (3–4 marks)	Order is correctly calculated.			
	Part of a viable mechanism is given.			
- 14 (4 5 1)	Little reasoning given for either step.			
Level 1: (1–2 marks)	Order is correctly calculated.			
0 marks	No creditworthy response.			

Indicative Content

Rate equation

- When [ClO-] is multiplied by 3, rate is multiplied by 9
- This shows rate α [ClO-]²
- Rate is second order with respect to [ClO-]
- Rate = k[ClO-]2

Mechanism (ALLOW any alternative that fits with equation stoichiometry and rate equation)

- Rate-determining step has 2 ClO-ions
- 2 ClO⁻ → 2 Cl⁻+ O₂
- Oxygen is not in the overall equation, so must be used up in the second step
- Second step must have an additional CIO- as the overall equation involved 3 CIO-
- ClO⁻+ O₂ → ClO₃⁻

e) i) Starting volume of ClO = $\frac{100}{1000}$ = 0.1 dm³ Starting moles of ClO = 0.1 × 0.01 = 0.001 \checkmark Moles of O₂ produced = $\frac{PV}{RT}$ Moles of O₂ produced = $\frac{500 \times 0.00072}{8.314 \times 470}$ \checkmark Moles of ClO reacting by this route = 2 × 1.382 × 10⁻⁴ = 2.764 × 10⁻⁴ Moles of ClO decomposing to give ClO₃ = 2 × 1.382 × 10⁻⁴ = 0.001 - 2.764 × 10⁻⁴ Moles of ClO decomposing to give ClO₃ = 7.236 × 10⁻⁴ \checkmark

ii) ANY FOUR FROM:

Add an <u>excess</u> of AgNO_{3(aq)} \checkmark AgCl precipitate forms \checkmark Filter precipitate \checkmark Wash (and allow to dry) \checkmark Weigh precipitate \checkmark Use moles = $\frac{Mass}{M_r}$ to work out moles of AgCl, (and hence Cl-) \checkmark

Moles of ClO₃ produced = $7.236 \times 10^{-4} \div 3 = 2.41 \times 10^{-4} \checkmark$

- 21 a) Peaks near 59 corresponding to the isotopes of cobalt ✓ (DO NOT ALLOW just 'peak at 59' (could be an isotope of something else) or mention of 'peak furthest right' as there are heavier metals in the sample)
 - b) i) $[Cu(H_2O)_6]^{2+}(aq) + 2NH_3(aq) \rightarrow Cu(H_2O)_4(OH)_2(s) + 2NH_4+(aq)$ Left-hand side \checkmark Right-hand side \checkmark (IGNORE state symbols) (ALLOW representation of complexes without H₂O ligands, but penalise once if the equation doesn't balance)
 - ii) Dark/deep blue solution ✓ [Cu(NH₃)₄(H₂O)₂]²+ ✓
 - c) i) Indication that the metal ion is $Cr^{3+}\checkmark$ Indication that the non-metal ion is $SO4^{2-}\checkmark$ Moles Cr^{3+} = moles $Cr(OH)_3 = 0.400 \div 103 = 3.883 \times 10^{-3}$ Moles $Cr_2(SO_4)_3 = 0.5 \times 3.883 \times 10^{-3} = 1.942 \times 10^{-3} \checkmark$ Mass of $Cr_2(SO_4)_3 = 1.942 \times 10^{-3} \times 392.3 = 0.7618 \text{ g} \checkmark \text{ALLOW ECF}$ Percentage by mass of chromium sulfate in rock = $\frac{0.7618}{10} \times 100 = 7.6(2) \% \checkmark \text{ALLOW ECF}$
 - ii) [Cr(OH)₃] dissolves in / reacts with excess NaOH ✓