Separate Science Physics Paper 1 Personal Learning Checklist

LO	Learning objectives:	Answer/Notes	Tick	RAG	RAG2			
1. Energ	BY							
Conserv	Conservation and Dissipation of Energy (Kerboodle Chapter 1)							
1.01	Describe the ways in which energy can be stored.							
	Describe how energy can be transferred for example:							
1.02	when an object falls;							
1.03	 when an object hits an obstacle and stops moving; 							
1.04	in bringing water to the boil in a kettle;							
1.05	on a trampoline;							
1.06	on a rollercoaster.							
1.07	Explain what is meant by "conservation of energy"							
1.08	Explain what is meant by a "closed system"							
	Calculate the following:							
1.09	the work done by a force;							
	the change in gravitational potential energy when an							
1.10	object is moved up or down;							
1.11	 the kinetic energy of an object; 							
	 the amount of energy in an elastic potential energy 							
1.12	store.							
	Explain why it is easier to lift an object on the moon than							
1.13	on the earth.							
	Describe what happens to work that is done to overcome							
1.14	friction.							
1.15	Describe what is meant by useful and wasted energy.							
1.16	Describe what happens to "wasted" energy in a system.							
1.17	Describe what is meant by efficiency.							
1 10	Calculate the efficiency of an energy transfer in terms of							
1.18	energy or of power. Explain what is meant by power and how to calculate the							
1.19	power of an appliance.							
1.13	Explain how energy transfers can be made more efficient							
1.20	(HT only)							

Energy 1	Fransfer by Heating (Kerboodle Chapter 2)			
1.21	Write down which materials make the best conductors.			
1.22	Write down which materials make the best insulators.			
	Core practical: plan an investigation to test which			
1.23	materials make the best insulator.			
	Describe how the thermal conductivity of a material			
	affects the rate of energy transfer through it by			
1.24	conduction.			
	Describe how the thickness of a layer of material affects			
1.25	the rate of energy transfer through it by conduction.			
	Describe what the specific heat capacity of a substance			
1.26	means.			
	Calculate the energy needed to change the temperature of			
1.27	an object.			
	Describe how the mass of a substance affects how quickly			
1.28	its temperature changes when you heat it.			
	Core practical: describe how to measure the specific heat			
1.29	capacity of a substance.			
1.30	Describe what infrared radiation is.			
1.31	State what black body radiation is.			
	Explain what happens to an object if it absorbs more			
1.32	radiation than it emits. (HT only)			
	Describe how the balance of absorbed and emitted			
1.33	radiation affects the temperature of the Earth. (HT only)			
1.34	Describe how homes are heated.			
	Describe how you can reduce the rate of energy transfer			
1.35	from your home.			
Energy R	esources (Kerboodle Chapter 3)		T	
1.36	Describe how most energy demands are met today.			
1.37	Name the energy resources that are used.			
1.38	Describe how nuclear fuels are used in power stations.			
1.39	Name the other fuels that are used in power stations.	 		
1.40	Name the other fuels that are used to generate electricity.			
1.41	Describe what a wind turbine is made of			
1.42	Describe how waves can be used to generate electricity.			
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		<u> </u>	

	Name the type of power station that uses water running	1	
1.43			
1.44			
	·		
1.45	·		
4.46	Describe the difference between a panel of solar cells and		
1.46			
1.47	9		
1.48	Describe how geothermal energy can be used to generate electricity.		
1.49			
1.50			
4 = 4	Describe the advantages and disadvantages of renewable		
1.51			
1.52			
4.52	Describe how best to use electricity supplies to meet		
1.53			
1.54			
	ectricity		
Electric	tric Circuits (Kerboodle Chapter 4)	T	
	Describe what happens when insulating materials rub		
2.01	~ ~		
2.02	'		
	Describe what happens when charges are brought		
2.03	~ ~		
2.04			
2.05			
2.06	Write down the difference between a battery and a cell.		
2.07	Describe what determines the size of an electric current.		
	Calculate the size of an electric current from the charge		
2.08	flow and the time taken.		
2.09	Write down what is meant by potential difference.		
2.10	Write down what resistance is and what its unit is.		
2.11			
	Core practical: how does the resistance of a wire depend		
2.12			

	Describe what happens when you reverse the potential		
2.13	difference across a resistor.		
	Describe what happens to the resistance of a filament		
2.14	lamp as its temperature increases.		
	Describe how the current through a diode depends on the		
2.15	potential difference across it.		
	Core practical: investigating I-V characteristics of a		
2.16	resistor, bulb and diode.		
	Describe what happens to the resistance of a temperature-		
2.17	dependent resistor as its temperature increases.		
	Describe what happens to the resistance of a light-dependent		
2.18	resistor as the light level increases.		
	Describe the current, potential difference, and resistance for		
2.19	each component in a series circuit.		
2.20	Describe the potential difference of several cells in series.		
2.21	Calculate the total resistance of two resistors in series.		
	Explain why adding resistors in series increase the total		
2.22	resistance.		
	Describe the currents and potential differences for		
2.23	components in a parallel circuit.		
2.24	Calculate the current through a resistor in a parallel circuit.		
	Explain why the total resistance of two resistors in parallel		
2.25	is less than the resistance of the smaller individual resistor.		
	Explain why adding resistors in parallel decrease the total		
2.26	resistance.		
2.27	Core practical: investigating resistors in series and parallel.		
Electric	city in the Home (Kerboodle Chapter 5)		
	Write down what direct current is and what alternating		
2.28	current is.		
	Describe what the live wire and the neutral wire of a mains		
2.29	circuit mean.		
2.30	Describe the National Grid.		
	Describe how to use an oscilloscope to measure the		
	frequency and peak potential difference of an alternating		
2.31	current.		

	Describe what the casing of a mains plug or socket is made			
2.32	of and explain why.			
2.33	Write down what is in a mains cable.			
	Write down the colours of the live, neutral, and earth			
2.34	wires.			
2.35	Explain why a three-pin plug includes an earth pin.			
2.36	Describe how power and energy are related.			
2.37	Use the power rating of an appliance to calculate the energy transferred in a given time.			
2.38	Calculate the electrical power supplied to a device from its current and potential difference.			
2.39	Work out the correct fuse to use in an appliance.			
2.39	Calculate the flow of electric charge given the current and			
2.40	time.			
2.41	Write down the energy transfers when electric charge flows through a resistor.			
	Describe how the energy transferred by a flow of electric			
2.42	charge is related to potential difference.			
	Link the electrical energy supplied by the battery in a			
	circuit to the energy transferred to the electrical			
2.43	components.			
	Calculate the energy supplied to an electrical appliance			
2.44	from its current, its potential difference, and how long it is			
2.44	used for. Work out the useful energy output of an electrical			
2.45	appliance.			
2.46	Work out the output power of an electrical appliance.			
2.47	Compare different appliances that do the same job.			
	· · · · · · · · · · · · · · · · · · ·			
	cle Model of Matter			
	les and matter (Kerboodle Chapter 6)		I	
3.01	Define density and write down its unit.			

3.01	Define density and write down its unit.		
	Core practical: describe how to measure the density of a		
3.02	solid object or a liquid.		
	Use the density equation to calculate the mass or the		
3.03	volume of an object or a sample.		

	Describe how to tell from its density if an object will float		
3.04	in water.		
	Describe the different properties of solids, liquids, and		
3.05	gases.		
	Describe the arrangement of particles in a solid, a liquid,		
3.06	and a gas.		
3.07	Explain why gases are less dense than solids and liquids.		
	Explain why the mass of a substance that changes state		
3.08	stays the same.		
	Write down what the melting point of and the boiling		
3.09	point of a substance mean.		
	Describe what you need to do to melt a solid or to boil a		
3.10	liquid.		
3.11	Explain the difference between boiling and evaporation.		
	Use a temperature-time graph to find the melting point or		
3.12	the boiling point of a substance.		
	Describe how increasing the temperate of a substance		
3.13	affects its internal energy.		
	Explain the different properties of a solid, a liquid, and a		
3.14	gas.		
	Describe how the energy of the particles of a substance		
3.15	changes when it is heated.		
3.16	Explain in terms of particles why a gas exerts pressure.		
	Write down what latent heat means as a substance		
3.17	changes its state.		
	Write down what specific latent heat of fusion and of		
3.18	vaporisation mean.		
3.19	Use specific latent heat in calculations.		
	Describe how to measure the specific heat latent heat of		
3.20	ice and of water.		
3.21	Describe how a gas exerts pressure on a surface.		
	Describe how changing the temperature of a gas in a		
3.22	sealed container affects the pressure of the gas.		
	Explain why raising the temperature of a gas in a sealed		
3.23	container affects the pressure of the gas.		
	Describe how to see evidence of gas molecules moving		
3.24	around at random.		

I	Describe how pressure (or volume) changes affect the			
3.25	volume (or pressure) of the gas.			
3.23	Describe why the pressure of a gas changes when its			
3.26	volume is changed at constant temperature.			
3.27	Use the equation $pV = constant$.			
	Explain why the temperature of a gas increases when it is			
3.28	compressed quickly enough. (HT only)			
	ic Structure			
	tivity (Kerboodle Chapter 7)		l	
4.01	Write down what a radioactive substance is.			
	Write down the types of radiation given out from a			
4.02	radioactive substance.			
	Write down what happens when a radioactive source			
4.03	emits radiation (radioactive decay).			
	Write down the different types of radiation emitted by			
4.04	radioactive sources.			
	Describe how the nuclear model of the atom was			
	established, (including Bohr's and Chadwick's			
4.05	contributions).			
	Explain why the 'plum pudding' model of the atom was			
4.06	rejected.			
	Describe what conclusions were made about the atom			
4.07	from experimental evidence.			
4.08	Explain why the nuclear model was accepted.			
4.09	Write down what an isotope is.			
	Describe how the nucleus of an atom changes when it			
4.10	emits an alpha particle or a beta particle.			
	Represent the emission of an alpha particle from the			
4.11	nucleus.			
	Represent the emission of a beta particle from the			
4.12	nucleus.			
	Write down how far each type of radiation can travel in			
4.13	air.			
	Describe how different materials absorb alpha, beta, and			
4.14	gamma radiation.			
	Describe the ionising power of alpha, beta and gamma			
4.15	radiation.			

	Explain why alpha, beta, and gamma radiation are			
4.16	dangerous.			
	Write down what the half-life of a radioactive source			
4.17	means.			
	Write down what the count rate from a radioactive source			
4.18	means.			
	Be able to calculate count rate after a given number of			
4.19	half-lives. (HT only.)			
	Describe what radioactive isotopes are used for in			
4.20	medicine.			
4.24	Describe how to choose a radioactive isotope for a			
4.21	particular job.			
4 22	Describe what type of nuclear radiation be used for medical imaging.			
4.22	Explain how to use radioactivity to destroy cancer cells.			
4.23	State what nuclear fission is.			
4.24	Explain the difference between spontaneous fission and			
4.25	induced fission.			
4.25	State what a chain reaction is.			
4.20	Describe how a chain reaction in a nuclear reactor is			
4.27	controlled.			
4.28	State what nuclear fusion is.			
4.29	Describe how nuclei can be made to fuse together.			
4.30	Describe where the Sun's energy comes from.			
4.31	Explain why it is difficult to make a nuclear fusion reactor.			
4.32	State what radon gas is and why it is dangerous.			
4.33	Describe how safe nuclear reactors are.			
4.34	Explain why nuclear waste is dangerous.			
4.35	Explain what happens to nuclear waste.			
	ns that I need to remember for Paper 1:			
Lquatioi	is that Theed to Temember for Paper 1.	Work done = joules (J)		
E1		Force = Newtons (N)		
C.T.	work done= force × distance	Distance = metres (m)		
		Kinetic energy = joules (J)		
E2		Mass = kilograms (kg)		
	kinetic energy = $\frac{1}{2} \times \text{mass} \times \text{speed}^2$	Speed = m/s		

		Weight = Newtons (N)	7
E3		Mass = kilograms (kg)	
	weight = mass \times gravitational field strength	Gravitational; field strength = N/kg	
		Gravitational potential energy = joules (J)	
	gravitational potential energy	Mass = kilograms (kg)	
	$=$ mass \times gravitational field strength	Gravitational field strength = N/kg	
E4	× change in height	Change in height = metres (m)	
		Energy transferred = joules (J)	
E5	energy transferred = power × time	Power = watts (W)	
		Time = seconds (s)	
		Efficiency = no units or % if x 100	
	useful output energy transfer	Useful output energy transfer = joules (J)	
E6	efficiency = absulate absu	Total input energy transfer = joules (J)	
		Charge flow = coulombs (C)	
E7	charge flow $(Q) = \text{current } (I) \times \text{time taken } (t)$	Current = amperes (A)	
		Time = seconds (s)	
	potential difference = energy transferred (E)	Potential difference = volts (V)	
E8	across a component (V) charge (Q)	Energy transferred = joules (J)	
		Charge = coulombs (C)	
		Resistance = ohms (Ω)	
E9	resistance (R) = <u>potential difference (V)</u> current (I)	Potential difference = volts (V)	
	current (7)	Charge = coulombs (C)	
	power supplied (P) = current (I) x potential	Power supplied = watts (W)	
E10	difference (V)	Current = amperes (A)	
	difference (V)	Potential difference = volts (V)	
	Dower (D) - energy transferred (E)	Power = watts (W)	
E11	Power (P) = <u>energy transferred (E)</u> time (t)	Energy transferred = joules (J)	
	time (t)	Time = seconds (s)	
	power (P) = current ² (I^2) x resistance (R)	Power = watts (W)	
E12	power (r) = current (r) x resistance (n)	Current = amperes (A)	
		Resistance = ohms (Ω)	
	Density (ρ)= mass (m)	Density = kg/m ³	
E13	volume (V)	Mass = kilograms (kg)	
	volunie (v)	Volume = m ³	

Separate Science Physics Paper 2 Personal Learning Checklist

LO	Learning objectives:	Answer/Notes	Tick	RAG	RAG2				
5. Force	es								
Forces i	Forces in balance (Kerboodle Chapter 8)								
5.01	Write down what displacement is.								
5.02	Write down what a vector quantity and scalar is is.								
	Describe how to represent a vector quantity and the unit of								
5.03	force								
5.04	Write down what forces can do.								
5.05	Write down what a contact force is.								
	Describe the forces being exerted when two objects								
5.06	interact.								
5.07	Describe what a resultant force is.								
	Describe what happens if the resultant force on an object is								
5.08	zero.								
	Describe what happens if the resultant force on an object is								
5.09	greater than zero.								
	Calculate the resultant force when two forces acting along								
5.10	the same line act an object.								
5.11	State what a free-body force diagram is. (HT only)								
5.12	State what the moment of a force measures.								
5.13	Calculate the moment of a force.								
5.14	Describe how the moment of a force can be increased.								
5.15	Describe why levers are force multipliers.								
5.16	Describe how levers act as force multipliers.								
5.17	Explain how you can tell if a lever is a force multiplier.								
5.18	Describe what gears do.								
5.19	Explain how gears can give a bigger turning effect.								
5.20	State what the centre of mass of an object is.								
5.21	State where the centre of mass of a metre ruler is.								
	Find the centre of mass of an object suspended from a fixed								
5.22	point.								

5.23	Find the centre of mass of a symmetrical object.		
	Use your knowledge of forces and moments to explain why		
5.24	objects at rest don't turn.		
	Identify the forces that can turn an object about a fixed		
5.25	point.		
	Identify whether a turning force that can turn an object		
5.26	turns it clockwise or anticlockwise.		
	Calculate the size of a force (or its perpendicular distance		
5.27	from a pivot) acting on an object that is balanced.		
5.28	State what a parallelogram of forces is. (HT only)		
5.29	State what a parallelogram of forces is used for. (HT only)		
	Write down what is needed to draw a scale diagram of a		
5.30	parallelogram of forces. (HT only)		
	Use a parallelogram of forces to find the resultant of two		
5.31	forces. (HT only)		
5.32	Describe what resolving a force means. (HT only)		
	Describe how to resolve a force into two components. (HT		
5.33	only)		
5.34	Define equilibrium. (HT only)		
5.35	Explain why an object at rest is in equilibrium. (HT only)		
Motion	(Kerboodle Chapter 9)		
5.36	Calculate speed for an object moving at constant speed.		
	Use a distance-time graph to determine whether an object		
5.37	is stationary or moving at constant speed.		
	State what the gradient of the line on a distance-time graph		
5.38	can tell you.		
	Use the equation for constant speed to calculate distance		
5.39	moved or time taken.		
5.40	State the difference between speed and velocity.		
5.41	Calculate the acceleration of an object.		
5.42	State the difference between acceleration and deceleration.		
	Explain that motion in a circle involves constant speed but		
5.43	changing velocity. (HT only)		
5.44	Measure velocity change.		
	State what the horizontal line on a velocity-time graph tells		
5.45	you.		

	Use a velocity time graph to work out whether an object is		
5.46	accelerating or decelerating.		
	State what the area under a velocity-time graph tells you.		
5.47	(HT only)		
	Calculate speed from a distance-time graph where the		
5.48	speed is constant. (HT only)		
	Calculate speed from a distance-time graph where the		
5.49	speed is changing. (HT only)		
5.50	Calculate the acceleration from a velocity-time graph.		
5.51	Calculate the distance from a velocity-time graph. (HT only)		
Force a	nd motion (Kerboodle Chapter 10)		
	Describe how the acceleration of an object depends on the		
5.52	size of the resultant force acting upon it.		
	Describe the effect that the mass of an object has on its		
5.53	acceleration.		
	Describe how to calculate the resultant force on an object		
5.54	from its acceleration and its mass.		
5.55	Core practical: investigating F = ma		
5.56	State what the inertia of an object means. (HT only)		
5.57	Describe the difference between mass and weight.		
	Describe and explain the motion of a falling object acted on		
5.58	only by gravity.		
5.59	State what terminal velocity means.		
	State what can be said about the resultant force acting on		
5.60	an object that is falling at terminal velocity.		
	Describe the forces that oppose the driving force of a		
5.61	vehicle.		
5.62	State what the stopping distance of a vehicle depends on.		
	State what can cause the stopping distance of a vehicle to		
5.63	increase.		
	Describe how to estimate the braking force of a vehicle. (HT		
5.64	only)		
5.65	Calculate momentum. (HT only)		
5.66	State the unit of momentum. (HT only)		
	Describe what momentum means in a closed system. (HT		
5.67	only)		

	Describe what happens when two objects push each other		
5.68	apart. (HT only)		
	Explain how momentum can be described as having		
5.69	direction as well as size. (HT only)		
	Explain why two objects that push each other apart always		
5.70	move away at different speeds. (HT only)		
	Explain what happens to the momentum of two objects		
5.71	when they collide. (HT only)		
	Explain what affects the force of impact when two vehicles		
5.72	collide. (HT only)		
	Describe how the impact force depends on the impact time.		
5.73	(HT only)		
	Explain what can be said about the impact forces and the		
5.74	total momentum when two vehicles collide. (HT only)		
	Explain why the impact force depends on the impact time.		
5.75	(HT only)		
	Describe how cycle helmets and cushioned surfaces reduce		
5.76	impact forces. (HT only)		
	Explain why seat belts and air bags reduce the force on		
5.77	people in car accidents. (HT only)		
	Explain how side impact bars and crumple zones work. (HT		
5.78	only)		
	Explain how we can work out if a car in a collision was		
5.79	speeding. (HT only)		
5.80	State what elastic means.		
	Core practical: describe how to measure the extension of an		
5.81	object when it is stretched.		
	Describe how the extension of a spring changes with the		
5.82	force applied to it.		
5.83	State what the limit of proportionality of a spring means.		
	nd pressure (Kerboodle Chapter 11)		
5.84	Define the term pressure.		
5.85	State the unit of pressure.		
5.86	Use the pressure equation.		
	Explain why the area of contact is important in pressure		
5.87	applications.		

	Describe how the pressure in a liquid increases with liquid		
5.88	depth. (HT only)		
	Explain why the pressure along a horizontal line in a liquid is		
5.89	constant. (HT only)		
5.90	State what the pressure in a liquid depends on. (HT only)		
5.91	Calculate the pressure caused by a liquid column. (HT only)		
5.92	Explain why the atmosphere exerts a pressure.		
5.93	Explain how and why atmospheric pressure changes with altitude.		
5.94	Explain how the density of the atmosphere changes with altitude.		
5.95	Calculate the force on a flat object due to a pressure difference.		
5.96	State what is meant by an upthrust on an object in a fluid. (HT only)		
5.97	Describe what causes upthrust. (HT only)		
5.98	Describe what the pressure in a fluid depends on. (HT only)		
5.99	Explain whether an object in a fluid floats or sinks. (HT only)		
6. Wave	es		
Wave p	roperties (Kerboodle Chapter 12)		
6.01	Describe what waves can be used for.		
6.02	Describe what transverse waves are.		
6.03	State what longitudinal waves are.		
6.04	State which types of wave are transverse and which are longitudinal.		
6.05	Define the amplitude, frequency, and wavelength of a wave mean.		
0.00	Describe how the period of a wave is related to its		
6.06	frequency.		
	State the relationship between the speed, wavelength, and		
6.07	frequency of a wave.		
6.08	Use the wave speed equation in calculations.		
6.09	Draw the patterns of reflection and refraction of plane waves in a ripple tank. (HT only)		
6.10	Determine whether plane waves that cross a boundary between two different materials are refracted. (HT only)		

	Explain reflection and refraction using the behaviour of		
6.11	waves. (HT only)		
	Describe what can happen to a wave when it crosses a		
6.12	boundary between two different materials. (HT only)		
6.13	State what sound waves are.		
	Core practical: investigating waves on a string and in a		
6.14	ripple tank.		
6.15	State what echoes are.		
6.16	Describe how to measure the speed of sound in air.		
6.17	State what affects the loudness of a musical note. (HT only)		
6.18	Explain how the ear detects sound waves. (HT only)		
6.19	Explain why human hearing is limited. (HT only)		
6.20	State what ultrasound waves are. (HT only)		
	Explain why ultrasound waves can be used to scan the		
6.21	human body. (HT only)		
	Describe how ultrasound waves are used to measure distances		
6.22	in medicine and in industry. (HT only)		
	Describe why an ultrasound scan is safer than taking an x-		
6.23	ray image. (HT only)		
6.24	State what seismic waves are. (HT only)		
6.25	Explain how seismic waves are produced. (HT only)		
	Describe what primary seismic waves and secondary		
6.26	seismic waves are. (HT only)		
	Explain what information seismic waves give about the		
6.27	structure of the Earth. (HT only)		
Electro	magnetic Waves (Kerboodle Chapter 13)		
6.28	State the parts of the electromagnetic spectrum.		
	Explain the range of wavelengths within the		
6.29	electromagnetic spectrum that the human eye can detect.		
	Describe how energy is transferred by electromagnetic		
6.30	waves.		
	Core practical: investigating how different surfaces emit		
6.31	infrared radiation.		
C 22	Calculate the frequency or wavelength of electromagnetic		
6.32	Waves.		
6.33	Describe the nature of white light.		

	List some uses of infrared radiation, microwaves, and radio		
6.34	waves.		
6.35	State what mobile phone radiation is.		
	Explain why these types of electromagnetic radiation are		
6.36	hazardous.		
	Explain why radio waves of different frequencies are used		
6.37	for different purposes.		
6.38	State which waves are used for satellite TV.		
	Describe how to decide whether or not mobile phones are		
6.39	safe to use.		
6.40	Describe how fibre optics are used in communications.		
6.41	Describe what a carrier wave is. (HT only)		
	Describe the differences between ultraviolet and visible		
6.42	light.		
6.43	List some uses of X-rays and gamma rays.		
6.44	State ionising radiation.		
	Explain why ultraviolet waves, X-rays, and gamma rays are		
6.45	dangerous.		
6.46	Describe what x –rays are used for in hospitals.		
	State which parts absorb x-rays when they pass through the		
6.47	body.		
	Explain the difference between the uses of low- and high-		
6.48	energy X-rays in hospitals. (HT only)		
Light (K	erboodle Chapter 14)		
6.49	Identify the normal in a diagram of light rays.		
6.50	State the law of reflection of a light ray at a plane mirror.		
6.51	Core practical: describe how a plane mirror forms an image.		
	Describe what is meant by specular reflection and diffuse		
6.52	reflection.		
6.53	Identify where refraction of light can happen.		
	Core practical: describe how a light ray refracts when it goes		
6.54	from air into glass or from glass into air.		
	Describe how the wavelength of light changes across the		
6.55	visible spectrum.		
6.56	Explain what determines the colour of a surface.		
6.57	Define what a translucent object is.		

	Explain the difference between a translucent object and a		
6.58	transparent object.		
6.59	Define what a convex lens is.		
6.60	Define what a concave lens.		
6.61	Calculate magnification.		
6.62	Find the position and nature of an image formed by a lens.		
	Identify what type of image a convex lens forms when the		
	object is between the lens and its principal focus (you may		
6.63	be required to draw this).		
	Describe what type of lens is used in a camera and in a		
6.64	magnifying glass.		
	Identify what type of image is formed in a camera and what		
6.65	type in a magnifying glass.		
7. Magn	etism and Electromagnetism		
Electron	nagnetism (Kerboodle Chapter 15)		
7.01	State the force rule for two magnetic poles near each other.		
	Describe the pattern of magnetic field lines around a bar		
7.02	magnet.		
7.03	Describe what induced magnetism is.		
	Explain why steel, not iron, is used to make permanent		
7.04	magnets.		
	Describe the pattern of the magnetic field around a straight		
7.05	wire carrying a current and in and around a solenoid.		
	Describe how the strength and direction of the field varies		
7.06	with position and with the current.		
7.07	Describe what a uniform magnetic field is.		
7.08	Describe what an electromagnet is.		
7.09	State what electromagnets can be used for.		
7.10	Explain how devices that use electromagnets work.		
	Describe how to change the size and reverse the direction		
7.11	of the force on a current-carrying wire in a magnetic field.		
7.12	Explain how a simple electric motor works. (HT only)		
7.13	Explain what is meant by magnetic flux density. (HT only)		
7.14	Calculate the force on a current-carrying wire. (HT only)		
7.15	Explain what the generator effect is. (HT only)		

ĺ	Evalain how a natantial difference can be induced in a wire		 	
7.16	Explain how a potential difference can be induced in a wire. (HT only)			
7.16	Describe what affects the size of the induced potential			
7.17	difference. (HT only)			
	Deduce the direction of an induced current. (HT only)			
7.18	Describe how a simple alternator (alternating-current			
7.19	generator) is constructed and operated. (HT only)			
7.19	Describe how the induced potential difference of an a.c.			
7.20	generator varies with time. (HT only)			
7.20	Explain how a simple dynamo (direct-current generator) is			
7.21	constructed and operated. (HT only)			
7.22	State what transformers are used for.			
7.22	Describe what a step-up transformer does and what a step-			
7.23	down transformer does.			
7.24	Explain why transformers only work with a.c. (HT only)			
7.25	Describe what a transformer is made up of. (HT only)			
7.23	Explain how the ratio of the primary potential difference to			
	the secondary potential difference depends on the number			
7.26	of turns on each coil. (HT only)			
	Explain how the number of turns on the secondary coils			
	relates to the number of coils on the primary coil for a step-			
7.27	down transformer and for a step-up transformer. (HT only)			
	State what you can say about a transformer that is 100%			
7.28	efficient. (HT only)			
	Explain why using high potential difference to transfer			
	power through the grid system wastes less power. (HT			
7.29	only)			
8. Space				
Space (K	erboodle Chapter 16)			
8.01	Describe how the solar system formed.			
8.02	Describe what is meant by a protostar.			
8.03	Explain how energy is released inside the Sun.			
8.04	Explain why the Sun is stable.			
8.05	Explain why stars eventually become stable.			
8.06	Explain the stages in the life of a star.			
8.07	Describe what will eventually happen to the Sun.			
0.07	2 costine will eventually happen to the ball.			

8.08	Describe what a supernova is.				
	State what forces keep planets and satellites moving along				
8.09	their orbits.				
	Identify the direction of the force on an orbiting body in a				
8.10	circular orbit.				
	Describe how the velocity of a body in a circular orbit				
8.11	changes as the body moves around the orbit. (HT only)				
	Explain why an orbiting body needs to move at a particular				
8.12	speed for it to stay in a circular orbit. (HT only)				
8.13	State what is meant by the red-shift of a light source.				
8.14	Explain how red-shift depends on speed.				
	Explain how people know that the distant galaxies are				
8.15	moving away from Earth.				
8.16	Explain why people think the Earth is expanding.				
8.17	Describe what the Big Bang theory of the universe is.				
8.18	Explain why the universe is expanding.				
8.19	Explain what cosmic microwave background radiation is.				
	Explain what evidence there is that the universe was				
8.20	created in a Big Bang.				
Equatio	ns that I need to remember for Paper 2:		<u>.</u>		
	moment (M) = force (F) x perpendicular distance* (d)	Moment = Newton metres (Nm)			
	*from the line of action of the force to the pivot.	Force = Newtons (N)			
E14	mont the line of detion of the force to the pivot.	Distance = metres (m)			
	speed $(v) = \underline{\text{distance } (s)}$	Speed = m/s			
E15	time taken(t)	Distance = metres (m) Time taken = seconds (s)			
E13		Acceleration = m/s ²			
	acceleration (α) = change in velocity (Δv)	Change in velocity = m/s			
E16	time taken (t)	Time taken = seconds (s)			
		Force = Newtons (N)			
	resultant force (F) = mass (m) x acceleration (a)	Mass = kilograms (kg)			
E17		Acceleration = m/s ²			
		Weight = Newtons (N)			
	weight (W) = mass (m) x gravitational field strength (g)	Mass = kilograms (kg)			
F10		Gravitational field strength (N/kg)			
E18		Momentum - kg m/s		1	
E18	momentum (M) = mass (m) x velocity (v)	Momentum = kg m/s Mass = kilogram (kg)			

		Force = Newton (N)	
	force applied (F) = spring constant (k) x extension (e)	Spring constant = N/m	
E20		Extension = metres (m)	
	Pressure (P) = force (F)	Pressure = Pascals (Pa)	
	· ·	Force = Newtons (N)	
E21	area (A)	Area = m ²	
		Wave speed = m/s	
	wave speed (v) = frequency (f) x wavelength (λ)	Frequency = Hertz (Hz)	
E22		Wavelength = metres (m)	