Which of the following nuclei has the smallest specific charge?

(Total 1 mark)

2 $^{232}_{90}$ Th is an unstable nuclide in a radioactive decay series. It decays by emitting an α particle. The next two nuclides in the series emit β^- particles.

What nuclide is formed after these three decays have taken place?

(Total 1 mark)

3

Which line does not give the correct exchange particle for the process?

	Process	Exchange particle	
Α	gravitational attraction	W boson	0
В	electrostatic repulsion of electrons	virtual photon	0
С	strong interaction	pion	0
D	β⁻ decay	W boson	0

In an experiment to demonstrate the photoelectric effect, a charged metal plate is illuminated with light from different sources. The plate loses its charge when an ultraviolet light source is used but not when a red light source is used.

What is the reason for this?

Α	The intensity of the red light is too low.	0	
В	The wavelength of the red light is too short.	0	
С	The frequency of the red light is too high.	0	
D	The energy of red light photons is too small.	0	

(Total 1 mark)

Which of the following classes of electromagnetic waves will not ionise neutral atoms?

What is the reason for this?

(Total 1 mark)

6

5

4

Experiments on which of the following suggested the wave nature of electrons?

Α	electron diffraction by a crystalline material	0
в	β⁻ decay	0
С	line spectra of atoms	0
D	the photoelectric effect	0

What are the numbers of hadrons, baryons and mesons in an atom of ⁷₃Li?

	hadrons	baryons	mesons	
Α	7	3	3	0
В	7	4	4	0
С	7	7	0	0
D	10	7	0	0

(Total 1 mark)

8 A calcium ion is formed by removing two electrons from an atom of $\frac{40}{20}$ Ca. What is the specific charge of the calcium ion?

7

9

(Total 1 mark)

Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

Which correctly compares the de Broglie wavelength λ_e of the electrons with the de Broglie wavelength λ_p of the protons and the width of the diffraction patterns that are produced by these beams?

	comparison of de Broglie wavelength	diffraction pattern	
Α	$\lambda_{\rm e} > \lambda_{\rm p}$	electron beam width > proton beam width	0
в	$\lambda_{\rm e} < \lambda_{\rm p}$	electron beam width > proton beam width	0
С	$\lambda_{\rm e} > \lambda_{\rm p}$	electron beam width < proton beam width	0
D	$\lambda_{\rm e} < \lambda_{\rm p}$	electron beam width < proton beam width	0

Which of the following is not true?

Α	Each meson consists of a single quark and a single antiquark.	0	
В	Each baryon consists of three quarks.	0	
С	The magnitude of the charge on every quark is $\frac{1}{3}$	0	
D	A particle consisting of a single quark has not been observed.	0	
			(Total 1 mark)

The intensity of a monochromatic light source is increased. Which of the following is correct? 11

	Energy of an emitted photon	Number of photons emitted per second	
A	increases	increases	0
В	increases	unchanged	0
С	unchanged	increases	0
D	unchanged	unchanged	0

(Total 1 mark)

12

10

The nucleus of 9_4Be captures a proton and emits an α particle. What is the product nucleus?

photon	emitted per second	
increases	increases	0
increases	unchanged	0
unchanged	increases	0
unchanged	unchanged	0

13

Monochromatic radiation from a source of light (source A) is shone on to a metallic surface and electrons are emitted from the surface. When a second source (source B) is used no electrons are emitted from the metallic surface. Which property of the radiation from source A must be greater than that from source B?

Α	amplitude	0
в	frequency	0
С	intensity	0
D	wavelength	0

(Total 1 mark)

14 An electron has a kinetic energy *E* and a de Broglie wavelength λ . The kinetic energy is increased to 4*E*. What is the new de Broglie wavelength?

(Total 1 mark)

15

	Particle	Category	Quark combination	
Α	neutron	baryon	ūd	0
В	neutron	meson	udd	0
С	proton	baryon	uud	0
D	positive pion	meson	ūd	0

16

In a photoelectric experiment, light is incident on the metal surface of a photocell. Increasing the intensity of the illumination at the surface leads to an increase in the

Α	work function	0	
В	minimum frequency at which electrons are emitted	0	
С	current through the photocell	0	
D	speed of the electrons	0	
			(Total 1 mark)

17 An electron collides with a neutral atom and ionizes it. Which of the following describes the particles present after the collision?

Α	An electron and an excited atom.	0
в	An excited atom containing an excess electron.	0
С	Two electrons and a positive ion.	0
D	Two electrons and a neutral atom in the ground state.	0

(Total 1 mark)

18 A radioactive nucleus emits a β^- . particle then an α particle and finally another β^- . particle. The final nuclide is

Α	an isotope of the original element	0
В	the same element with a different proton number	0
С	a new element of higher proton number	0
D	a new element of lower nucleon number	0

C 2λ Ο

D 4λ

E₀ ----- -13.6

The transition of an excited hydrogen atom from E_3 to E_1 causes a photon of visible light to be emitted.

Which transition causes a photon of ultraviolet light to be emitted?

(Total 1 mark)

23 In a nuclear reaction ${}^{14}_{7}N$ is bombarded by neutrons. This results in the capture of one neutron and the emission of one proton by one nucleus of ${}^{14}_{7}N$. The resulting nucleus is

Α	¹³ ₇ N
в	¹⁴ ₆ C
С	¹² 6C
D	¹⁴ 8O

22

The diagram **drawn to scale** shows some of the energy levels of an atom. Transition **P** results in the emission of a photon of wavelength 4×10^{-7} m.

Which one of the transitions **A**, **B**, **C**, or **D** could result in the emission of a photon of wavelength 8×10^{-7} m?

(Total 1 mark)

25 Which one of the graphs best represents the relationship between the energy W of a photon and the frequency f of the radiation?

The transition E_3 to E_1 corresponds to the emission of visible light.

A transition corresponding to the emission of infrared radiation could be

A E_1 to E_0

26

- **B** E_4 to E_1
- **C** E_1 to E_2
- **D** E_3 to E_2

27 Which of the following statements about muons is **incorrect**?

			(Total 1 mark)
D	A muon with the same momentum as an electron has a larger kinetic energy than the electron.	0	
С	If a muon and an electron each have the same de Broglie wavelength then they each have the same momentum.	0	
В	A muon has a greater mass than an electron.	0	
Α	A muon is a lepton.	0	

29

The values of the lowest three energy levels in a particular atom are shown in the table.

The diagram shows these levels together with the ground state of the atom.

Level	Energy/eV	3.
3	-0.85	2
2	-1.51	1
1	-3.39	ground

When an electron moves from level 3 to level 1, radiation of frequency 6.2×10^{14} Hz is emitted. What is the frequency of the radiation emitted when an electron moves from level 2 to level 1?

Α	2.3 × 10 ¹⁴ Hz	0
В	3.5 × 10 ¹⁴ Hz	0
С	4.6 × 10 ¹⁴ Hz	0
D	8.3 × 10 ¹⁴ Hz	0

(Total 1 mark)

What is the best estimate for the order of magnitude for the diameter of an atom?

Electron capture can be represented by the following equation.

$$p + e^- \rightarrow X + Y$$

Which row correctly identifies X and Y?

	x	Y	
Α	р	K⁻	0
В	e-	e+	0
С	n	V _e	0
D	n	π^0	0

(Total 1 mark)

30